

Министерство экологии и природных ресурсов Республики Казахстан Республиканское Государственное Предприятие «Казгидромет»

СЕЗОННЫЙ БЮЛЛЕТЕНЬ

АНОМАЛИИ СРЕДНЕЙ ТЕМПЕРАТУРЫ ВОЗДУХА И КОЛИЧЕСТВА АТМОСФЕРНЫХ ОСАДКОВ НА ТЕРРИТОРИИ КАЗАХСТАНА ЗА ВЕСЕННИЙ ПЕРИОД 2025 ГОДА

ВВЕДЕНИЕ

Изучение регионального климата и постоянный мониторинг его изменения является одной из приоритетных задач национальной гидрометеорологической службы Казахстана РГП «Казгидромет».

Для подготовки бюллетеня использованы данные наблюдений на сети метеорологического мониторинга РГП «Казгидромет» — ряды среднесезонных температур воздуха и сумм осадков в период с 1941 года.

Аномалии средних сезонных температур приземного воздуха и сезонных сумм осадков определены относительно норм — средних многолетних значений, рассчитанных за период 1991—2020 гг., рекомендованный Всемирной метеорологической организацией в качестве базового для мониторинга степени аномальности текущего климата. Аномалии температуры воздуха рассчитаны как отклонения наблюдённого значения от нормы. Аномалии количества осадков представлены в процентах нормы, то есть как процентное отношение количества выпавших осадков к соответствующему значению нормы.

Для характеристики климатических экстремумов приводятся карты, где для каждой станции указан диапазон эмпирической вероятности непревышения текущего значения во временном ряду рассматриваемой переменной за период с 1941 года по текущий год (эмпирическая вероятность непревышения – это доля значений временного ряда, меньших, либо равных текущему значению). Если вероятность непревышения текущего значения переменной попадает в крайние диапазоны (0–5 % или 95–100 %), значит, данное значение встречалось не чаще, чем в 5 % случаев в период с 1941 года. Если вероятность непревышения текущего значения температуры воздуха лежит в диапазоне 0–5 %, это говорит о наблюдавшихся в данном месте экстремально низких температурах, если в диапазоне 95–100 %, то, наоборот, об экстремально высоких температурах. Если рассматривать количество осадков, то в первом случае это свидетельствует об экстремально малом их количестве, во втором – об экстремально большом количестве осадков.

Ответственные за выпуск: Б. Кукенова – ведущий инженер УКИ НИЦ Г. Актаева – ведущий научный сотрудник УКИ НИЦ

АНОМАЛИИ СРЕДНЕЙ ТЕМПЕРАТУРЫ ВОЗДУХА ЗА СЕЗОН

Весной положительные аномалии температуры воздуха охватывали всю территорию Казахстана (рис. 1), варьируясь от +1 °C до +4,4 °C. Минимальные значения наблюдались в горных и предгорных районах. Повышение температурных аномалий отмечалось как с запада на восток, так и с востока на запад, с максимальной положительной аномалией +4,4 °C, зафиксированной на МС Карабутак, Актюбинской области.

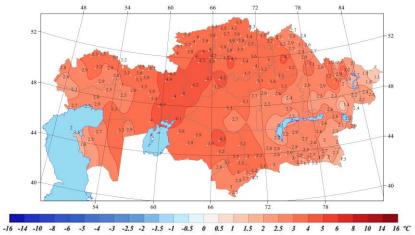


Рисунок I — Пространственное распределение аномалий средней за весенний период температуры воздуха (°C) 2025 г., рассчитанных относительно норм за период 1991—2020 гг.

За весенний период у одной трети метеостанций обновились максимальные рекордные значения (Приложение 1, табл. 1). И более половины (108) метеостанций, вошли в градацию «экстремально тепло» с вероятностью непревышения 95–100 % (рис. 2). Метеостанции, расположенные в Карагандинской и Восточно-Казахстанской областях, а также в областях Абай и Жетысу, вошли в градацию «тепло» с вероятностью непревышения 75–95 %.

Рисунок 2 — Пространственное распределение вероятностей непревышения средней за весенний период температуры воздуха (°C) 2025 г., рассчитанных относительно норм за период 1941—2025 гг.

Сравнительный анализ изменения температуры воздуха показал, что весенний период 2025 г. был теплее, чем весенний период 2024 г. и превышал норму за многолетний период 1991—2020 гг. (рис. 3). Наибольшая положительная аномалия температуры составила +6 °С в апреле на метеостанции Железнодорожный совхоз в Костанайской области. Самая значительная отрицательная аномалия наблюдалась в марте и составила -0,1 °С на МС Аягоз в области Абай и МС Когалы в области Жетысу.

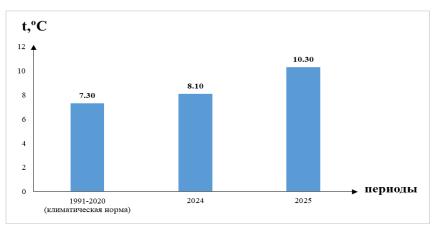


Рисунок 3 — Средняя температура воздуха за весенний период (°C) относительно нормы за многолетний период 1991—2020 гг., за весну 2024 г. и 2025 г.

СЕЗОННОЕ КОЛИЧЕСТВО АТМОСФЕРНЫХ ОСАДКОВ

Весной 2025 г. количество осадков на территории страны распределялось неравномерно (рис. 4). Преимущественно наблюдался дефицит осадков, охватывавший почти всю территорию страны, за исключением Северо-Казахстанской, Акмолинской и Восточно-казахстанской областей.

На западе дефицит осадков (менее 80 % от климатической нормы) был на северном Каспии, в юго-восточной части Западно-Казахстанской области, а также Актюбинской области, за исключением хребта Мугоджар. На севере дефицит отмечался в Костанайской области, а на востоке занимал преимущественную часть области Абай и юг-восточную часть Павлодарской области. В центральных и южных регионах дефицит осадков также был выраженным, за исключением области Жетысу.

Избыток осадков (более 120 % нормы) наблюдался в Мангистауской области, на юго-восточной части Атырауской области и в районе хребта Мугоджар, также в северных и восточных регионах Казахстана.

Рисунок 4 — Пространственное распределение количества атмосферных осадков средней за весенний период 2025 г. (в % нормы, рассчитанной относительно базового периода 1991–2020 гг.)

Самое значительное количество осадков за весенний период выпало на МС Бейнеу в Мангистауской области и составило $98,8\,$ мм $(234\,$ % нормы).

В Костанайской области, области Абай и южных регионах страны на 12 метеостанциях зафиксированы 5 %-е экстремумы, вошедшие в градацию «экстремально сухо» (рис. 5).

По данным 9 метеостанций, расположенных в Северо-Казахстанской, Костанайской и Мангистауской областях зафиксированы 5 %-ные экстремумы, вошедшие в градацию «экстремально влажно». Также в Северо-Казахстанской и Костанайской областях были обновлены рекорды максимальных сумм осадков за весенний сезон (Приложение 1, табл. 2).

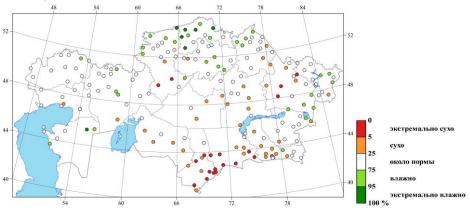


Рисунок 5 — Пространственное распределение вероятности непревышения количества атмосферных осадков средней за весенний период 2025 г. Вероятности рассчитаны по данным периода 1941–2025 гг.

Сравнительный анализ количества осадков показал, что в весенний период 2025 г. в среднем по всему Казахстану выпало на 30,9 мм меньше осадков, чем в весенний период 2024 г. А также меньше на 14,8 мм относительно норм за многолетний период 1991–2020 гг., в то время как весной 2024 года выпало на 16,1 мм больше осадков относительно базового периода (рис. 6).

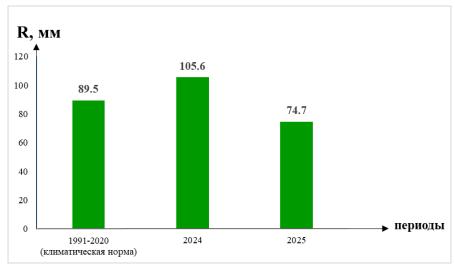


Рисунок 6 — Среднее количество осадков за весенний период (мм) относительно норм за многолетний период 1991—2020 гг., за весну 2024 г. и 2025 г.

Приложение 1

Таблица 1. Максимальные рекордные значения температуры воздуха за весну 2025 г.

	сну 2023 1.		Новый	Прежний
3.0	3.6	0.5	рекорд	рекорд
№	Метеостанция	Область	температуры	температуры,
			воздуха, °С	°C
1	Жалгызтобе	Абай	8,7	8,6 (1997 г.)
2	Шар	Абай	8,0	8,0 (2023 г.)
3	Акколь	Акмолинская	7,3	7,0 (2020 г.)
4	Аршалы	Акмолинская	7,2	7,0 (2020 г.)
5	Астана	Акмолинская	9,0	8,9 (2020 г.)
6	Атбасар	Акмолинская	7,5	7,1 (2020 г.)
7	Балкашино	Акмолинская	6,5	6,2 (2020 г.)
8	Есиль	Акмолинская	8,4	7,5 (2020 г.)
9	Жалтыр	Акмолинская	7,5	7,3 (2020 г.)
10	Коргалжын	Акмолинская	8,0	7,7 (2001 г.)
11	Актобе	Актюбинская	10,1	9,6 (2023 г.)
12	Аяккум	Актюбинская	13,6	13,3 (2023 г.)
13	Иргиз	Актюбинская	11,7	11,5 (2023 г.)
14	Карабутак	Актюбинская	9,6	8,9 (2008 г.)
15	Комсомольское	Актюбинская	9,0	8,1 (2008 г.)
16	Мартук	Актюбинская	9,5	9,4 (2023 г.)
17	Нура	Актюбинская	11,8	11,6 (2023 г.)
18	Шалкар	Актюбинская	12,3	12,2 (2023 г.)
19	Родниковка	Актюбинская	8,2	8,2 (2008 г.)
20	Кос-Истек	Актюбинская	8,0	7,5 (1995 г.)
21	Есик	Алматинская	12,8	12,7 (2008 г.)
22	Шелек /Чилик	Алматинская	15,0	14,6 (2022 г.)
23	Кулан	Жамбылская	14,4	14,4 (2008 г.)
24	Тараз /Жамбыл	Жамбылская	14,9	14,7 (2008 г.)
25	Шокпар	Жамбылская	14,3	14,2 (2008 г.)
26	Бес-Оба	Карагандинская	7,0	6,8 (1997 г.)
27	Караганда	Карагандинская	8,3	8,0 (2020 г.)
28	Амангельды	Костанайская	10,0	9,3 (2008 г.)
29	Аркалык	Костанайская	8,8	8,0 (2020 г.)
30	Аршалинский з/свх	Костанайская	7,5	7,2 (2020 г.)
31	Диевская	Костанайская	8,4	7,5 (2020 г.)
32	Железнодорожный	Костанайская	7,9	6,8 (2020 г.)
33	Житыкара	Костанайская	8,2	7,7 (2020 г.)
34	Карабалык	Костанайская	7,8	7,7 (2020 г.)
35	Караменды	Костанайская	9,0	8,1 (2020 г.)

№	Метеостанция	Область	Новый рекорд температуры	Прежний рекорд температуры, °C
36	Vomeov	Костанайская	воздуха, °С 7,6	6,9 (2020 г.)
37	Карасу Костанай	Костанайская		
			8,7	7,8 (2020 г.)
38	Кушмурун	Костанайская	8,4	8,1 (2020 г.)
39	Михайловка_Кост	Костанайская	7,9	7,2 (2020 г.)
40	Рудный	Костанайская	7,9	7,4 (2020 г.)
41	Сарыколь/Урицкий	Костанайская	7,7	7,5 (1981 г.)
42	Тобол	Костанайская	8,1	7,3 (2020 г.)
43	Торгай	Костанайская	11,0	10,7 (2008 г.)
44	Аральское море	Кызылординская	14,6	14,3 (2023 г.)
45	Злиха	Кызылординская	15,6	14,9 (2008 г.)
46	Казалы/Казалинск	Кызылординская	15,2	14,5 (2023 г.)
47	Карак	Кызылординская	16,2	15,6 (2023 г.)
48	Кызылорда	Кызылординская	16,9	16,2 (2008 г.)
49	Шиели	Кызылординская	16,9	16,7 (2008 г.)
50	Жосалы	Кызылординская	15,5	14,9 (2023 г.)
51	Рузаевка	Северо- казахстанская	7,5	7,1 (2020 г.)
52	Саумалколь /Володарское	Северо- казахстанская	7,2	7,0 (2020 г.)
53	Тимирязево/свх Восход	Северо- казахстанская	7,5	7,3 (2020 г.)
54	Арыс	Туркестанская	17,7	17,4 (2008 г.)
55	Аул Турара Рыскулова	Туркестанская	15,4	15,2 (2008 г.)
56	Ашысай	Туркестанская	14,5	14,1 (2008 г.)
57	Тасарык	Туркестанская	13,0	12,8 (2008 г.)
58	Тасты	Туркестанская	15,7	15,4 (2008 г.)
59	Шардара	Туркестанская	18,3	18,0 (2008 г.)
60	Шолаккорган	Туркестанская	15,1	14,5 (2008 г.)
61	Шымкент	Туркестанская	16,7	16,4 (2023 г.)
62	Жетысай	Туркестанская	18,3	18,2 (2008 г.)

Таблица 2. Максимальные рекордные значения месячного количества атмосферных осадков за весну

Nº	Метеостанция	Область	Новый рекорд суммы атмосферных осадков, мм	Прежний рекорд суммы атмосферных осадков, мм
1	Благовещенка	Северо- Казахстанская	154,4	126,8 (1970 г.)
2	Рузаевка	Северо- Казахстанская	153,2	149,6 (2011 г.)
3	Пресногорьковка	Костанайская	137,0	118,2 (2015 г.)