

Министерство энергетики

Республиканское государственное предприятие «Казгидромет»

Научно-исследовательский центр

ЕЖЕГОДНЫЙ БЮЛЛЕТЕНЬ МОНИТОРИНГА СОСТОЯНИЯ И ИЗМЕНЕНИЯ КЛИМАТА КАЗАХСТАНА: 2017 ГОД

Астана, 2018

СОДЕРЖАНИЕ

KPATKOE PE3IOME	3
введение	5
1 ОБЗОР ИЗМЕНЕНИЙ ГЛОБАЛЬНОГО КЛИМАТА И ЕГО СОСТОЯНИЯ	
В 2017 г.	8
2 ТЕМПЕРАТУРА ВОЗДУХА	12
2.1 Аномалии температуры воздуха на территории Казахстана в 2017 году	14
2.2 Наблюдаемые на территории Казахстана изменения температуры воздуха	26
2.3 Тенденции в экстремумах температуры приземного воздуха	32
3. АТМОСФЕРНЫЕ ОСАДКИ	39
3.1 Аномалии количества осадков на территории Казахстана в 2017 году	39
3.2 Наблюдаемые на территории Казахстана изменения количества осадков	45
3.3 Тенденции в экстремумах атмосферных осадков	53
ПРИЛОЖЕНИЕ 1	55
ПРИЛОЖЕНИЕ 2	58

КРАТКОЕ РЕЗЮМЕ

Особенности климата в 2017 году

Несмотря на то, что в глобальном масштабе 2017 год был более прохладным, чем рекордный 2016 год, он, тем не менее, вошел в число трех самых теплых лет в истории наблюдений, став самым теплым годом, не подвергавшимся воздействию явления Эль-Ниньо. Глобальные средние температуры в 2017 году были на 1.1 ± 0.1 °C выше доиндустриальных уровней. Средняя глобальная температура за 2013—2017 годы была почти на 1 °C выше, чем за 1850-1900 годы, а также стала самой высокой средней глобальной температурой за пятилетний период за всю историю наблюдений. Все самые теплые в мире годы произошли с 2005 г., а пять самых теплых - с 2010 года. В 2017 году попрежнему наблюдается повышение уровня моря, которое происходило в некоторой степени более ускоренными темпами, а также увеличение концентраций парниковых газов. Криосфера продолжала сокращаться наряду с сокращением протяженности арктического и антарктического морского льда. 2017 год стал годом, за который, по имеющимся данным, были понесены самые высокие экономические потери, связанные с суровыми погодными и климатическими явлениями. Всемирный экономический форум по-прежнему присваивает экстремальным погодным явлениям рейтинг наиболее существенных рисков, с которыми сталкивается человечество, как с точки зрения вероятности их возникновения, так и степени их воздействия.

В Казахстане 2017 год был относительно теплым и занял 10 место в ранжированном по убыванию ряду наблюдений с 1941 года. Среднегодовая температура воздуха составила 7,1 °C, что на 0,69 °C выше климатической нормы за 1981-2010 гг. Среднее годовое значение температуры воздуха за последнее пятилетие 2013-2017 гг. достигло самых высоких отметок с 1943 г.: +7,06 °C. Средняя температура воздуха за последнее десятилетие 2008-2017 гг. составила +6,74 °C и превысила климатическую норму на 0,35 °C, это вторая по величине положительная аномалия, после рекордно теплого десятилетия 1998-2007 гг.

Годовое количество осадков в 2017 году в среднем на территории Казахстана было около климатической нормы - 96 % нормы (313,7 мм). Экстремально сухо наблюдалось в районах метеостанций Бейнеу (Мангистауская область), Шиели (Кызылординская область), Кордай (Жамбылская область) и Кокпекты (Восточно-Казахстанская область). Вероятность непревышения здесь составила 0 - 5 %.

Изменение климата в Казахстане (1976-2017 гг.)

В среднем по территории Казахстана повышение среднегодовой температуры воздуха составляет $0.34~^{\circ}\mathrm{C}$ /10 лет. Наибольшие темпы роста наблюдаются в весенний

период $(0,63 \, {}^{\circ}\text{C}/10 \, \text{лет})$, наименьшие - в зимний период $(0,16 \, {}^{\circ}\text{C}/10 \, \text{лет})$. Во все сезоны, кроме зимнего, отмечена статистически значимое повышение температуры воздуха.

За период 1976-2017 гг. на некоторых метеостанциях республики прослеживаются статистически достоверные положительные тенденции суточных максимумов температуры воздуха в пределах 0,2-0,4 °C/10 лет и 0,4-0,9 °C/10 лет.

Статистически достоверная тенденция увеличения количества очень жарких дней с температурой воздуха выше 35 ^{o}C на 4-8 дней каждые 10 лет наблюдается на западе и юге Казахстана.

Увеличение продолжительности волн тепла на 2-5 дня, когда, как минимум, 6 последовательных дней суточная максимальная температура воздуха была выше 90-го процентиля, наблюдалась на некоторых метеостанциях Акмолинской области и юге Казахстана.

Практически повсеместно на территории республики на 3-6 дней/10 дней уменьшается повторяемость ночей с морозом, когда суточная минимальная температура опускается ниже 0 °C.

На большей части территории Казахстана наблюдалось уменьшение на 4 - 8 дней/10 лет *количества дней с морозом*.

На западе и юге страны отмечены тенденции к увеличению *суточной амплитуды* на 0,1-0,4 °C/10 лет, тогда как на востоке и юго-востоке, наоборот, наблюдались тенденции к их уменьшению на 0,1 - 0,4 °C/10 лет.

Статистически достоверное увеличение *максимального суточного количества осадков* на 2-4 мм/10 лет были зафиксированы на метеостанциях Аркалык, Аксай, Атырау, Уштобе, Бектауата и Карабалык.

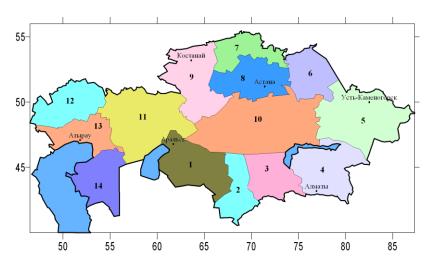
На некоторых станциях Акмолинской и Павлодарской областей, а также на юге и юго-востоке республики наблюдалось статистически значимое сокращение на 2-6 дней/10 лет максимальной продолжительности периода без осадков.

ВВЕДЕНИЕ

Климат — это природный ресурс, жизненно важный для благосостояния, здоровья и процветания населения любого государства. Метеорологическая информация, собираемая, управляемая и анализируемая национальными гидрометеорологическими службами, помогает пользователям данной информации, в том числе и лицам, принимающим решения, планировать любую деятельность с учетом современных климатических условий и наблюдаемых изменений климата. Использование актуальной метеорологической и климатической информации способствует уменьшению рисков и ущерба и оптимизирует социально-экономические выгоды. Мониторинг климатической системы осуществляется национальными, региональными и международными организациями при координации со стороны Всемирной Метеорологической Организации и в сотрудничестве с другими программами по окружающей среде.

Изучение регионального климата и постоянный мониторинг его изменения является одной из приоритетных задач национальной гидрометеорологической службы Казахстана РГП «Казгидромет». С 2010 года РГП «Казгидромет» осуществляет выпуск ежегодных бюллетеней для предоставления достоверной научной информации о региональном климате, его изменчивости и изменении. Принимая во внимание географическое положение Казахстана и его обширную территорию, наблюдаемые изменения климатических условий в различных регионах Республики могут оказать как негативное, так и позитивное воздействие на биофизические системы, на экономическую деятельность и социальную сферу. Учет климатических условий и оценка их изменений необходимы для определения потенциальных последствий и принятия своевременных и адекватных мер адаптации, в конечном итоге, для обеспечения устойчивого развития Казахстана.

Данный выпуск бюллетеня описывает климатические условия, наблюдавшиеся в 2017 г., включая оценку экстремальности режимов температуры и осадков, и предоставляет историческую информацию об изменении температуры приземного воздуха и количества осадков, которые имели место, начиная с 1941 года прошлого столетия. Также этот выпуск бюллетеня содержит оценки изменения климата за более короткий период - с середины 1970-х годов прошлого века, когда, по мнению многих экспертов, изменение глобального климата стало более интенсивным, особенно в Северном полушарии. В Приложениях 1 и 2 приведены карты распределения средних многолетних значений температуры воздуха и количества осадков за период 1981-2010 гг., осредненных по сезонам и за год.


Исходные данные. Для подготовки бюллетеня использовались данные Республиканского гидрометеорологического фонда РГП «Казгидромет»:

- 1) ряды среднемесячных температур воздуха и месячных сумм осадков с 1941 по 2017 гг., при этом данные более 200 метеостанций были использованы для оценки климатических норм за период 1981 2010 гг. и более 190 метеостанций для оценки тенденций;
- 2) ряды суточных максимальных и минимальных температур воздуха и суточного количества осадков с 1936 по 2017 гг. (более 90 метеостанций).

Основные подходы и методы. Под «нормой» в бюллетене понимается среднемноголетнее значение рассматриваемой климатической переменной за период 1981-2010 гг. Аномалии температуры рассчитываются как отклонения наблюдённого значения от нормы. Аномалии количества осадков принято рассматривать как в отклонениях от нормы (аналогично температуре воздуха), так и в процентах от нормы. Вероятность непревышения характеризует частоту (в %) появления соответствующего значения аномалии в ряду наблюдений.

В качестве оценки изменений характеристики климата за определенный интервал времени используются коэффициенты линейных трендов, определяемые по методу наименьших квадратов. Мера существенности тренда — коэффициент детерминации (R^2) , характеризующий вклад трендовой составляющей в полную дисперсию климатической переменной за рассматриваемый период времени (в процентах).

Оценка тенденций температуры приземного воздуха и количества осадков проведена как по данным отдельных станций, так и в среднем для 14-ти областей Казахстана. Средние для территории величины аномалий метеорологических переменных рассчитаны путем осреднения станционных данных об аномалиях. Границы областей представлены на картесхеме ниже.

- 1 Кызылординская обл.
- 2 Туркестанская обл.
- 3 Жамбылская обл.
- 4 Алматинская обл.
- 5 Восточно-Казахстанская обл.
- 6 Павлодарская обл.
- 7 Северо-Казахстанская обл.
- 8 Акмолинская обл.
- 9 Костанайская обл.
- 10 Карагандинская обл.
- 11 Актюбинская обл.
- 12 Западно-Казахстанская обл.
- 13 Атырауская обл.
- 14 Мангистауская обл.

Схема административно-территориального деления Республики Казахстан

Для оценки экстремальности температурного режима и режима осадков в 2017 г. и ее изменения в период 1941-2017 гг. использовались индексы изменения климата, рекомендованные Всемирной метеорологической организацией. Некоторые индексы основаны на фиксированных единых пороговых значениях для всех станций, другие — на пороговых значениях, которые могут варьировать от станции к станции. В последнем

случае пороговые значения определяются как соответствующие процентили рядов данных. Индексы позволяют оценить многие аспекты изменения климата, такие, например, как изменение интенсивности, частоты и продолжительности проявления экстремальности в температуре воздуха и количества осадков.

Ответственный за выпуск: ведущий инженер Управления климатических исследований Илякова Р.М. (раздел 2, 3, краткое резюме). В подготовке бюллетеня также принимали участие: начальник Управления Долгих С.А. (введение, раздел 1), ведущий Смирнова Е.Ю. (раздел 2), научный научный сотрудник ведущий сотрудник Байбазаров Д.К. (построение карт) и ведущий научный сотрудник Монкаева Г.Е. (расчет и анализ индексов экстремальности), старший научный сотрудник Белдеубаев Е.Е. (карты климатических норм).

1 ОБЗОР ИЗМЕНЕНИЙ ГЛОБАЛЬНОГО КЛИМАТА и ЕГО СОСТОЯНИЯ В 2017 г.

В течение последних 25 лет Всемирная метеорологическая организация (ВМО) публикует ежегодное Заявление о состоянии глобального климата, чтобы предоставить авторитетную научную информацию о глобальном климате и значительных погодных и климатических явлениях, происходящих во всем мире. Эти публикации дополняют оценочные доклады, выпускаемые Межправительственной группой экспертов по изменению климата (МГЭИК) каждые шесть - семь лет.

Со времени выпуска первого Заявления о состоянии глобального климата в 1993 г. научное понимание комплексной климатической системы нашей планеты развивалось стремительными темпами. Это особенно верно в отношении понимания влияния человечества на изменение климата, а также характера и степени такого изменения. Это включает в себя способность документировать возникновение экстремальных погодных и климатических явлений и степень, в которой они могут быть связаны с влиянием человека на климат.

Кратко о состоянии глобального климата в 2017 г.:

- концентрации парниковых газов продолжают расти;
- 2017 год самый теплый год без Эль-Ниньо;
- 2013-2017 гг. самый теплый 5-летний период в истории наблюдений;
- глобальное теплосодержание океана достигло рекордных уровней в истории наблюдений;
 - уровень моря продолжает расти;
 - продолжается окисление океана;
- протяженность арктического и антарктического морского льда значительно ниже среднего значения.

Средняя глобальная температура в 2017 г. была примерно на 1,1 °C выше аналогичного показателя доиндустриальной эпохи, что означает, что мы уже более чем на половину достигли максимального предельного уровня повышения температуры, составляющего 2 °C и закрепленного в Парижском соглашении, которое стремится еще в большей степени ограничить такое увеличение до 1,5 °C свыше доиндустриальных уровней. 2017 г. был самым теплым в истории наблюдений годом, не подвергавшимся воздействию явления Эль-Ниньо, и одним из трех самых теплых лет, при этом рекорд сохраняется за 2016 г. Все самые теплые в мире годы произошли с 2005 г., а пять самых теплых - с 2010.

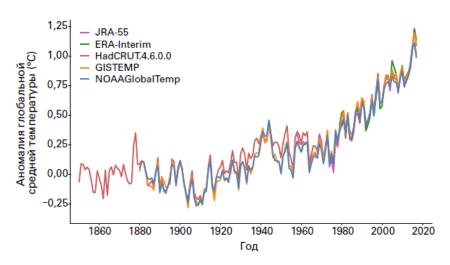


Рисунок 1.1 - Аномалии глобальной средней температуры по сравнению с базовым периодом 1850-1990 гг. в рамках пяти глобальных наборов данных. Источник: Центр им. Гадлея Метеобюро СК.

Глобальные температуры морской поверхности в 2017 г. были несколько ниже уровней 2015 г. и 2016 г., но тем не менее заняли третье место в числе самых высоких в истории наблюдений. Теплосодержание океана, представляющее собой меру тепла в океанах в верхних слоях, достигло в 2017 г. рекордных максимумов. Среднее теплосодержание океана в 2017 г. для слоя 0-700 метров составляло 158,1 ЗДж, что на 6,9 ЗДж выше, чем предыдущее среднегодовое рекордное значение, зафиксированное в 2015 г.

Круговая диаграмма показывает вклад отдельных компонентов бюджета уровня моря (выраженного в процентах от наблюдаемого глобального среднего уровня моря) в течение двух периодов, 1993-2004 и 2004-2015 гг. Она ясно показывает, что в последние годы увеличился вклад почти всех компонентов, особенно таяния полярных ледяных щитов, в основном в Гренландии и в меньшей степени в Антарктике. Ускоренная потеря ледяной массы от ледяных щитов является основной причиной ускорения глобального повышения среднего уровня моря, что подтверждается спутниковой альтиметрией.

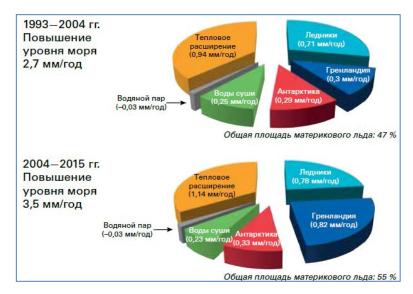


Рисунок 1.2 - Вклад отдельных компонентов бюджета уровня моря (выраженного в процентах от наблюдаемого глобального среднего уровня моря) в течение двух периодов, 1993-2004 и 2004-2015 гг.

Источник: Dieng, H. et al., 2017: New estimate of the current rate of sea level rise from a sea level budget approach. GeophysicalResearchLetters, 44, doi: 10.1002/2017GL073308.

Протяженность морского льда на протяжении 2017 г. была значительно ниже среднего значения за 1981-2010 г. как в Арктике, так и в Антарктике. Зимний максимум

протяженности арктического морского льда, составивший 14,42 млн км², был достигнут 7 марта и стал самым низким показателем зимнего максимума в истории спутниковых наблюдений - на 0,10 млн км² ниже предыдущего рекордно низкого значения, зафиксированного в 2015 г. На протяжении всего года протяженность антарктического морского льда находилась на рекордно или почти рекордно низких уровнях. Летний минимум, составивший 2,11 млн км², был зарегистрирован 3 марта и был на 0,18 млн км² ниже предыдущего рекордного значения, зафиксированного в 1997 г., в то время как зимний максимум, составивший 18,03 млн км² и зарегистрированный 12 октября (что соответствует последней максимальной дате в имеющихся данных наблюдений) занял второе место после 1986 г.

В 2017 г. было меньше районов с большими аномалиями осадков, чем в 2015 или 2016 г., так как воздействие сильного явления Эль-Ниньо 2015/2016 г. закончилось. В 2017 году было зарегистрировано 84 тропических циклона по всему миру, что очень близко к долгосрочному среднему значению. Три чрезвычайно разрушительных урагана произошли в быстрой последовательности в Северной Атлантике в конце августа и сентябре. Эти три урагана вошли в пятерку ураганов, вызвавших наибольшие экономические потери в Соединенных Штатах Америки (наряду с ураганом «Катрина» в 2005 г. «Сэнди» в 2012 г.), причинив ущерб, оцениваемый в размере 125 млрд долл. США от урагана «Харви», 90 млрд долл. США от урагана «Мария» и 50 млрд долл. США от урагана «Ирма».

Засуха, которая затронула значительную часть Восточной Африки в 2016 г., продолжалась и в 2017 г. В 2017 г. во многих частях Средиземноморья, а также в некоторых частях Центральной Европы отмечалась значительная засуха. Засуха также затронула регион центральной части Северной Америки по обе стороны границы между Соединенными Штатами Америки и Канадой.

В течение 2017 г. во всем мире наблюдалось множество значительных волн тепла как в южном, так и в северном полушарии летом. В период с 2000 по 2016 г. число людей, подверженных риску воздействия волн тепла, увеличилось примерно на 125 миллионов.

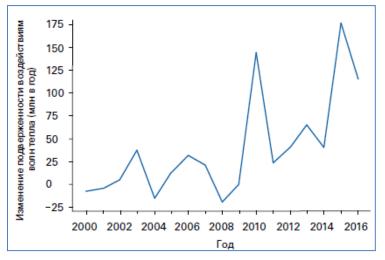


Рисунок 1.3 – Изменение подверженности воздействиям (количество людей в возрасте старше 65 лет) волн тепла с 2000 по 2016 г. применительно к усредненному показателю подверженности воздействиям волн тепла за период с 1986 по2008 г. Источник: Всемирная организация здравоохранения (ВОЗ)

Экстремальная жара и засуха способствовали возникновению многочисленных разрушительных природных пожаров в различных тропических регионах, многочисленные районы средних широт также пережили сезоны сильнейших пожаров.

2 ТЕМПЕРАТУРА ВОЗДУХА

Территория Казахстана, находящаяся в центре Евразийского континента и удаленная от океана на значительное расстояние (2000 - 3000 км), прогревается более значительными темпами, чем земной шар в среднем, и такими же темпами, как в среднем Северное полушарие. За период 1976-2017 гг. коэффициент линейного тренда среднегодовой температуры воздуха составил для Земного шара +0.18 °C/10 лет (объясненная трендом доля дисперсии ряда -85 %), +0.34°C/10 лет для суши Северного полушария (вклад тренда в дисперсию -85 %), и+0.34°C/10 лет для Казахстана (вклад тренда в дисперсию 26 %).

В среднем по Казахстану среднегодовая аномалия температуры воздуха составила +0,69 °C относительно среднего многолетнего значения за период 1981-2010 гг. Это десятая величина в ранжированной по убыванию аномалии температуры воздуха. Норма средней годовой температуры воздуха по территории Казахстана за период 1981 - 2010 гг. составляет 6,4 °C. Среднегодовая температура воздуха в 2017 году составила 7,1 °C, что на 0,1 °C ниже, чем в 2016 году. Среднее годовое значение температуры воздуха за последнее пятилетие 2013- 2017 гг. достигло самых высоких отметок с 1943 г.: +7,06 °C. Средняя температура воздуха за последнее десятилетие 2008 - 2017 гг. составила +6,74 °C и превысила климатическую норму на 0,35 °C, это вторая по величине положительная декадная аномалия, после рекордно теплого десятилетия 1998-2007 гг.

В таблице 2.1 представлены ранги десяти самых теплых лет в среднем по Земному шару (по данным наземной сети) и по Казахстану. Каждому из 10-ти самых тёплых лет для Земного шара присвоен свой цвет заливки, что позволяет легко судить, находится ли этот год в числе самых теплых лет для Казахстана. Четыре самых тёплых года в Казахстане, включая 2017 г., вошли в список десяти самых тёплых лет для Земного шара.

На рисунке 2.1 представлен ранжированный ряд среднегодовых аномалий температур приземного воздуха, осреднённых по данным 124 метеостанций Казахстана за период с 1941 г. В глобальном масштабе все экстремально тёплые годы приходятся на последние 20 лет. В Казахстане эта особенность также хорошо прослеживается, исключение составляют 1983 г., который занимает второе место в ранге самых теплых лет, и 1995 г., который также вошел в десятку самых теплых лет.

Таблица 2.1 – Самые тёплые годы в истории наблюдений на Земном шаре (с 1850 г.) в Казахстане за период 1941 - 2017 гг. и соответствующие аномалии среднегодовой температуры приземного воздуха, осредненные по территории Казахстана. Аномалии рассчитаны относительно периода 1981 - 2010 гг.

Ранг	Земной шар	Казахстан	Аномалия среднегодовой температуры (янвдек.), осредненная по территории Казахстана, °С
1	2016	2013	1,26
2	2017	1983	1,09
3	2015	2015	1,02
4	2014	2004	1,53
5	2010	2002	0,92
6	2005	2007	0,87
7	2013	2016	0,86
8	2006	1995	0,85
9	2009	2008	0,71
10	1998	2017	0,69

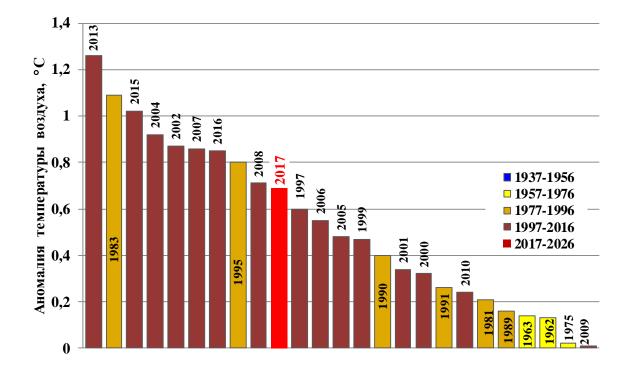


Рисунок 2.1 – Ранжированный ряд положительных аномалий среднегодовых (январь-декабрь) температур приземного воздуха, осреднённых по территории Казахстана (по данным 124 метеостанций) за период 1941 - 2017 гг. Нормы рассчитаны относительно базового периода 1981 - 2010 гг.

2.1 Аномалии температуры воздуха на территории Казахстана в 2017 г.

2017 г. (январь-декабрь) был теплым и занял 10 место в ранжированном по убыванию ряду наблюдений с 1941 года (таблица 2.1).

В таблице 2.2 представлены среднегодовые и средние сезонные аномалии температуры воздуха, в таблице 2.3 - средние месячные аномалии температуры воздуха, наблюдавшихся в 2017 г. и осредненные по областям и по Казахстану в целом. Для каждого значения аномалии приведены вероятности непревышения, рассчитанные по данным за период 1941-2017 гг. а также среднее квадратическое отклонение за 1981-2010 гг. (таблица 2.2). В таблицах 2.2 и 2.3 значения температуры выше 95-го или ниже 5-го процентиля (соответственно теплые и холодные экстремумы) выделены жирным шрифтом и ярким цветом.

Средняя за год температура воздуха, осредненная по территории Казахстана, была выше климатической нормы на 0,69 °C (88-ой процентиль) при стандартном отклонении 0,78 °C. Аномалия данного года не превышает значение стандартного отклонения. Наибольшие значения положительной аномалии температуры воздуха наблюдались в Атырауской (0,97 °C), Мангистауской (1,09 °C), Акмолинской (0,96 °C) Восточно-Казахстанской (0,92 °C) областях. Вероятность непревышения в этих районах составила 89 - 93 %. Температура воздуха зимнего сезона (декабрь 2016 г.-февраль 2017 г.) превысила климатическую норму на 0,86 °C (78-ой процентиль). Отрицательная аномалия температуры воздуха наблюдалась на территории Атырауской (минус 0,17°C), Западно-Казахстанской (минус 1,33°С), Костанайской (минус 0,37°С) Северо-Казахстанской (минус 0,35 °C) областей. Средняя по территории Казахстана аномалия сезона +0,48 °C температуры воздуха весеннего составила (вероятность непревышения 69 %). В Актюбинской и Жамбылской областях температура воздуха была немного ниже нормы (на 0,16 °C и 0,15 °C соответственно). В мае экстремально жарко было в Туркестанской области, где превышение нормы составило 2,83 °C (вероятность непревышения 96 %). *Лето 2017 года* было достаточно теплым, осредненная по территории Казахстана аномалия составила +0,7 °C (93-й процентиль). Экстремально жарко было в июне в Восточно-Казахстанской области (97-ой процентиль) и в июле в Алматинской, Жамбылской и Кызылординской областях (96-97 процентили). Осень 2017 года была достаточно теплой на территории всего Казахстана. Средняя по территории республики температура воздуха была на 0,94 °C выше климатической нормы (89-йпроцентиль), положительная аномалия наблюдалась во всех областях Казахстана. В Актюбинской и Костанайской областях в *ноябре* превышение климатической нормы составило 4,02 °C (вероятность непревышения 97 %) и 4,86 °С (вероятность непревышения 96 %).

Географическое распределение очагов холода и тепла в различные сезоны и в целом за год представлено на рисунке 2.2.

На метеостанциях Катон-Карагай, Усть-Каменогорск (Восточно-Казахстанская область), Акколь, Астана, Щучинск (Акмолинская область) вероятность непревышения достигла 96-100%. 2017 г. в этих регионах вошел в 10-ку самых жарких лет (таблица 2.2; рисунок 2.2). На МС Астана был перекрыт максимум среднегодовой

температуры воздуха и составил 5.2 °C (предыдущий максимум, равный 5.0 °C, наблюдался в 2013 году).

Таблица 2.2 – Регионально осредненные средние годовые (январь-декабрь) и сезонные аномалии температуры воздуха в 2017 г.: **vT** – *отклонения от средних многолетних за* 1981 - 2010 гг., °C; $P(t \le T_{2017})$ – вероятность непревышения (в скобках), рассчитанная по данным за период 1941-2017 гг. в %; s – среднее квадратическое отклонение в °C за период 1981 - 2010 гг.

Регион/область	Год		Зима		Весна	ì	Лето		Осень	
	vT (P)	s	vT (P)	s	s vT (P)		vT (P)	S	vT (P)	s
Казахстан	0,69 (88)	0,78	0,86 (78)	2,03	0,48 (69)	1,51	0,72 (93)	0,71	0,94 (89)	0,78
Алматинская	0,53 (85)	0,72	1,53 (92)	1,68	0,38 (71)	1,47	0,54 (85)	0,66	0,64 (78)	0,72
Акмолинская	0,96 (93)	0,96	1,01 (76)	2,52	1,03 (71)	1,83	0,64 (85)	1,10	0,99 (82)	0,96
Актюбинская	0,67 (85)	0,97	0,23 (71)	2,58	-0,16 (52)	1,90	0,86 (82)	1,32	1,57 (89)	0,97
Атырауская	0,97 (90)	0,99	-0,17 (60)	2,34	1,27 (77)	1,38	0,80 (82)	1,04	1,30 (92)	0,99
Восточно-Казахстанская	0,92 (92)	0,96	2,40 (93)	2,27	0,67 (72)	1,71	1,01 (90)	0,75	0,37 (63)	0,96
Жамбылская	0,43 (82)	0,72	1,43 (82)	2,10	-0,15 (53)	1,50	0,53 (86)	0,71	0,83 (86)	0,72
Западно-Казахстанская	0,68 (78)	1,08	-1,33 (50)	2,80	0,23 (61)	1,72	0,65 (73)	1,51	1,58 (90)	1,08
Карагандинская	0,63 (86)	0,88	1,49 (86)	2,15	0,20 (57)	1,87	0,91 (94)	0,81	0,70 (80)	0,88
Костанайская	0,36 (78)	1,02	-0,37 (59)	2,52	0,23 (57)	1,99	0,06 (75)	1,36	1,16 (80)	1,02
Кызылординская	0,67 (84)	0,91	0,43 (60)	2,61	0,65 (71)	1,84	1,03 (92)	0,81	1,28 (92)	0,91
Мангистауская*	1,09 (89)	0,87	0,20 (57)	1,97	1,34 (78)	1,36	1,16 (85)	1,13	1,54 (91)	0,87
Павлодарская	0,74 (86)	1,05	1,60 (82)	2,91	0,86 (71)	1,73	0,64 (86)	0,93	0,30 (61)	1,05
Северо-Казахстанская	0,55 (84)	0,95	-0,35 (61)	2,66	0,70 (69)	1,70	0,05 (69)	1,20	0,71 (75)	0,95
Туркестанская	0,54 (86)	0,70	0,71 (64)	2,05	0,23 (61)	1,39	0,96 (94)	0,76	1,20 (93)	0,70

Примечания: 1. для Мангистауской области оценка проводилась за период 1960 – 2017 гг.; 2. значения выше 95-го или ниже 5-го процентиля (соответственно теплые и холодные экстремумы) выделены жирным шрифтом и ярким цветом.

Зима (декабрь 2016 г. - февраль 2017 г.). На большей части территории Казахстана температура воздуха была в пределах нормы (минус 8,79°С). Зима характеризуется, как более прохладная в западной части республики с постепенным увеличением температуры на восток. На метеостанциях Усть-Каменогорск и Шемонаиха (Восточно-Казахстанская область), а также Алматы-ОГМС (Алматинская область) было экстремально тепло. Вероятность непревышения на этих станциях составила 96-100 %. Зима в этих районах вошла в 10 % самых теплых зимних сезонов. В Атырауской, Западно-Казахстанской, Костанайской и Северо-Казахстанской областях отрицательные аномалии составили от 0,17 °С до 1,33 °С (вероятность непревышения 50-61 %).

Весна 2017 г. была теплой на всей территории республики. Среднесезонная температура была 7,36 °C (69-й процентиль). Наибольшие аномалии наблюдались на юго-западе и северо-востоке Казахстана. Абсолютные максимумы за весенний сезон

перекрыты не были. В Актюбинской области было более прохладно, температура воздуха в этом регионе была на 0,16 °C ниже климатической нормы.

Таблица 2.3 – Регионально осредненные средние месячные аномалии температуры воздуха в 2017 г.: \mathbf{vT} – отклонения от средних за 1981 - 2010 гг., °C; $P(t \le T_{2016})$ - вероятность непревышения (в скобках), рассчитанная по данным за период 1941 – 2017 гг. и выражена в %

Регион/ область	12	1	2	3	4	5	6	7	8	9	10	11
	(2016)											
Казахстан	1,03	1,65	-0,02	-0,02	0,47	0,99	0,47	0,79	0,90	0,52	-0,49	2,80
	(70)	(88)	(59)	(60)	(65)	(75)	(78)	(84)	(84)	(71)	(53)	(90)
Алматинская	3,36	0,54	0,82	-0,27	-0,18	1,64	0,65	2,04	-1,09	0,32	0,09	1,44
	(90)	(61)	(63)	(51)	(48)	(89)	(81)	(97)	(21)	(68)	(60)	(76)
Акмолинская	0,64	2,51	-0,01	0,58	1,39	1,05	1,49	-1,03	1,41	0,28	-1,30	4,03
	(58)	(86)	(61)	(65)	(69)	(65)	(85)	(36)	(88)	(55)	(40)	(92)
Актюбинская	-1,06	2,05	-0,33	0,05	-0,29	-0,23	-1,13	0,85	2,82	1,39	-0,72	4,02
	(42)	(85)	(52)	(59)	(52)	(35)	(42)	(72)	(92)	(90)	(53)	(97)
Атырауская	-1,30	1,17	-0,23	2,93	0,60	0,33	-1,07	1,23	2,30	1,93	-0,37	2,33
	(36)	(73)	(57)	(85)	(65)	(47)	(30)	(88)	(89)	(92)	(57)	(88)
Восточно-	3,61	1,91	1,82	-1,14	1,83	1,27	2,37	0,67	-0,09	-0,61	-0,48	2,14
Казахстанская	(92)	(80)	(76)	(46)	(85)	(78)	(97)	(71)	(57)	(28)	(47)	(75)
Жамбылская	2,93	2,08	-0,55	-1,73	-0,60	1,90	0,58	1,57	-0,48	0,48	0,42	1,63
	(85)	(84)	(50)	(36)	(43)	(93)	(78)	(96)	(59)	(71)	(69)	(76)
Западно-	-3,23	-0,21	-0,50	1,73	-0,19	-0,84	-2,20	0,89	3,26	1,69	-0,33	3,36
Казахстанская	(20)	(57)	(59)	(76)	(61)	(27)	(21)	(80)	(93)	(88)	(63)	(94)
Карагандинская	2,48	2,51	-0,49	-0,9	0,49	0,99	1,54	0,86	0,35	0,06	-0,56	2,63
1	(85)	(88)	(53)	4(51)	(65)	(67)	(90)	(78)	(73)	(51)	(51)	(77)
Костанайская	-1,66	1,43	-0,83	0,37	0,36	0,00	-0,69	-0,77	1,69	0,27	-1,70	4,89
	(38)	(78)	(52)	(61)	(57)	(40)	(50)	(44)	(86)	(52)	(38)	(96)
Кызылординская	1,07	2,72	-2,45	0,10	0,42	1,53	0,08	1,72	1,32	1,23	0,03	2,65
•	(68)	(82)	(42)	(64)	(65)	(85)	(63)	(96)	(85)	(86)	(68)	(90)
Мангистауская	-0,44	1,80	-0,74	2,57	0,39	1,10	-0,81	1,83	2,50	2,49	-0,19	2,43
-	(37)	(84)	(49)	(85)	(63)	(64)	(40)	(94)	(85)	(92)	(56)	(89)
Павлодарская	1,08	3,30	0,64	0,06	1,80	0,82	1,80	-0,72	0,84	-0,52	-1,22	2,66
	(69)	(89)	(64)	(60)	(81)	(71)	(85)	(35)	(82)	(30)	(36)	(77)
Северо-	-1,89	1,14	-0,24	0,69	1,04	0,43	0,30	-1,48	1,31	-0,46	-2,04	4,66
Казахстанская	(38)	(77)	(56)	(65)	(63)	(59)	(65)	(27)	(89)	(38)	(31)	(93)
Туркестанская	1,80	1,63	-0,27	-1,43	-0,68	2,83	0,71	1,87	0,29	0,89	0,74	1,94
••	(77)	(76)	(42)	(36)	(38)	(96)	(78)	(94)	(72)	(85)	(72)	(85)

Примечания: 1. для Мангистауской области оценка проводилась за период 1960-2017 гг.; 2. значения выше 95-го или ниже 5-го процентиля (соответственно теплые 95%-е и холодные 5%-е экстремумы) выделены жирным шрифтом и ярким цветом.

Лето 2017 года было теплым, осредненная по территории Казахстана аномалия составила +0,7 °C (93-й процентиль). В районах некоторых метеостанций Карагандинской, Восточно-Казахстанской, Алматинской, Туркестанской и Кызылординской областей было экстремально тепло (96-97 процентиль). Лето 2017 г. в этих районах вошла в 10 % экстремально теплых весенних сезонов. В июне перекрыты абсолютные максимумы на метеостанциях Восточно-Казахстанской области: Жалгызтобе +22,8 °C (+22,3 °C, 2016 г.),

Заповедник Маркаколь +14,4 °C (+14,2 °C, 1998 г.), Шар +22,0 °C (+22,3 °C, 2012 г.) и в июле на метеостанции Кызылорда +30,3 (+30,0 °C, 1983).

Осень 2017 года была достаточно теплой на территории всего Казахстана. Средняя по территории республики температура воздуха была на 0,94 °C (89-й процентиль) выше климатической нормы. На северо-востоке, востоке и юго-востоке Казахстана осенние температуры воздуха были около нормы. В районах метеостанций (Кызылординская область), Казыгурт (Туркестанская область), Аккудук (Мангистауская область) и Аксай (Западно-Казахстанская область) вероятность непревышения была 96-97 %, таким образом, осень 2017 года в этих районах вошла в 10 % экстремально теплых сезонов. В октябре на станции Екидын (Костанайской области) был зафиксирован исторический максимум +1,3 °C, что на 0,7 °C выше предыдущего (+0,6 °C, 2004 год).

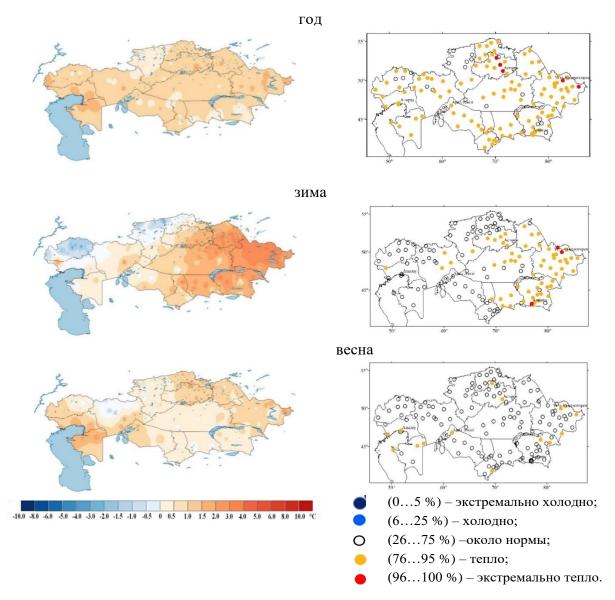


Рисунок 2.2 — Пространственное распределение аномалий температуры воздуха (°C) в 2017 году, рассчитанных относительно базового периода 1981 - 2010 гг., и вероятности непревышения значений температуры воздуха в 2017 году, рассчитанные по данным периода 1941 - 2017 гг. $\mathit{Лист}\ 1$

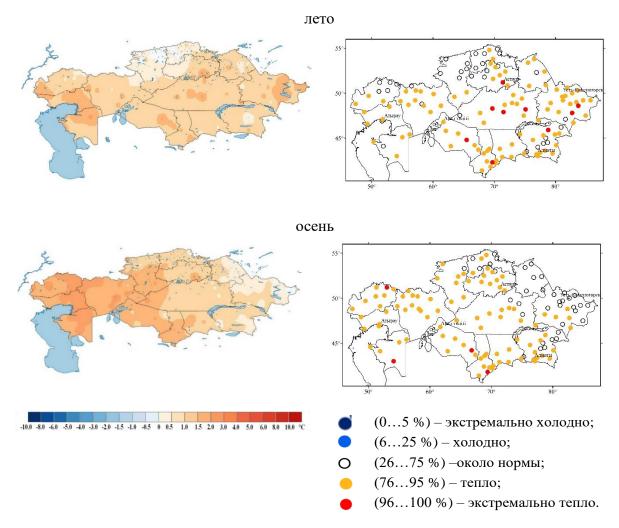


Рисунок 2.2 — Пространственное распределение аномалий температуры воздуха (°C) в 2017 году, рассчитанных относительно базового периода 1981 - 2010 гг., и вероятности непревышения значений температуры воздуха в 2017 году, рассчитанные по данным периода 1941 - 2017 гг. Лист 2

С точки зрения изменения климата наибольший интерес сейчас представляют экстремальные климатические явления, которые оказывают большое воздействие на различные сектора экономики (здравоохранение, водные ресурсы, сельское хозяйство и т.д.). Всемирной метеорологической организацией был рекомендован программный пакет ClimPact2, который дает возможность рассчитать и проанализировать частоту и интенсивность изменений этих явлений. По данным суточных значений максимальной, минимальной температуры воздуха и атмосферных осадков на метеорологических станциях Казахстана за период 1936 – 2017 гг. были рассчитаны следующие климатические индексы:

- ТХх, максимум из суточных максимумов температуры воздуха;
- TNn, минимум из суточных минимумов температуры воздуха;
- SU35, количество очень жарких дней с температурой выше 35 °С;
- TX90p, процент теплых дней с суточной максимальной температурой воздуха выше 90-го процентиля;

- TN10p, процент дней, когда минимальная температура была ниже 10-го процентиля (холодные ночи);
- WSDI, продолжительность волн тепла, или количество дней, когда, как минимум, 6 последовательных дней суточная максимальная температура воздуха была выше 90-го процентиля;
- CSDI, продолжительность волн холода, или сумма дней, когда, как минимум, 6 последовательных дней суточная минимальная температура воздуха была ниже 10-го процентиля;
 - FD0, количество ночей с морозом;
 - ID, количество дней с морозом;
 - GSL, продолжительность вегетационного периода;
 - RX1days, максимальное количество осадков за 1 сутки;
 - CDD, продолжительсть бездождных периодов, отсутствовали осадки;
- CWD, продолжительность периодов с осадками, или количество дней, когда, как минимум, 6 последовательных дней, когда количество выпавших осадков было равно или больше 1 мм;
- R95pTOT, доля экстремального суточного количества осадков в годовой сумме осадков.
 - ID, сутки с дневными заморозками.
 - HWF, общая продолжительность волны тепла теплого периода
 - FDm20, жесткие морозы
 - ТМ10а, количество дней со среднесуточной температурой выше 10 °C
 - Hdd heat8, сумма температур за отопительный период.

Суточный максимум температуры воздуха в 2017 г. На рисунке 2.3 представлены значения абсолютных максимумов температуры воздуха, зарегистрированные с начала открытия метеостанции по 2017 год. Синим цветом — значения суточных максимумов температуры воздуха, наблюдавшиеся в 2017 г, а красным цветом показаны значения абсолютных максимумов, зарегистрированных с момента открытия станции по 2016 г. В 2017 г. значения абсолютных максимумов, не были превышены ни на одной станции Казахстана.

Большинство самых высоких значений температуры воздуха (абсолютные максимумы) в Казахстане были зафиксированы в июле 1983 г., когда на некоторых метеорологических станциях Туркестанской области температура воздуха достигла +49...+50 °C (Туркестан, Шаян, Арыс, Тасты), а также в июле 1995 г., когда на МС Кызылкум температура воздуха поднялась до +51 °C.

На рисунке 2.4 представлены абсолютные минимумы температуры воздуха, (красным цветом), зафиксированные с момента открытия метеостанции по 2016 г., и синим цветом — значения минимальной температуры воздуха в 2017 г. В Казахстане абсолютные минимумы температуры воздуха ниже минус 54°С зафиксированы на 2 метеорологических станциях - в январе 1931 г. на МП Шаганатты (-54°С) и в январе 1893 г. на МС Астана (-52 °С). В 2017 г., как и в 2016 году, рекорды суточных минимальных температур не были

обновлены. В 2017 г. температуры воздуха ниже минус 30 °C наблюдались в северной половине Казахстана, на МС Эмба Актюбинской области отмечена самая низкая температура воздуха в 2017 г.: минус 37,4 °C.

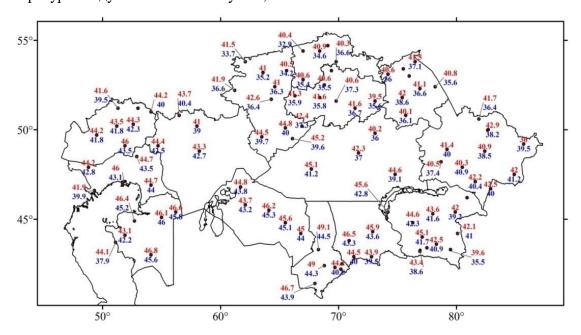


Рисунок 2.3 — Значения абсолютных максимумов температуры воздуха (°C), зарегистрированные с начала открытия метеостанции по 2016 г. (нанесены красным цветом) и максимальные значения суточной температуры воздуха (°C), наблюдавшиеся в 2017 г. (нанесены синим цветом)

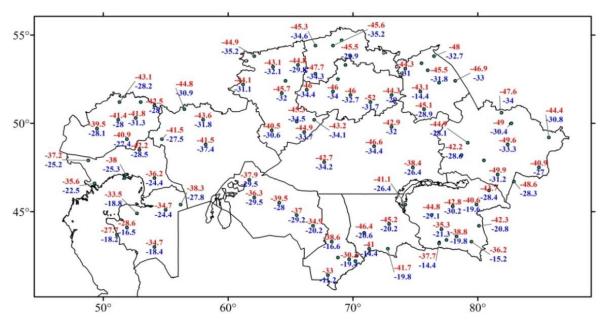


Рисунок 2.4 — Значения абсолютных минимумов температуры воздуха (°C), зарегистрированные с начала открытия метеостанции по 2016 г. (нанесены красным цветом) и минимальные значения суточной температуры (°C), наблюдавшиеся в 2017 г. (нанесены синим цветом)

Количество очень жарких дней с температурой воздуха выше 35 °С представляет интерес для разных секторов экономики, к примеру для сельского хозяйства, так как высокие температуры являются хорошими условиями для роста садово-бахчевых культур, но при отсутствии влаги высокие температуры приводят к засухе и к потерям урожая. При высоких температурах организм человека испытывает определенный дискомфорт, что важно учитывать в здравоохранении и в энергетике, так как в периоды с такой температурой тратится больше энергии на охлаждение помещений.

В северных, центральных и северо-восточных равнинных регионах, а также в горных районах юга и юго-востока температуры выше 35 °C либо не наблюдались, либо наблюдались крайне редко, о чем свидетельствуют вероятности непревышения (рисунок 2.5 б). В западных и южных областях количество жарких дней часто превышало 30 дней, максимальное количество наблюдалось в Туркестанской и Мангистауской областях (53-72 дня). Вероятность непревышения данных значений здесь была достаточно высокая: 76 - 95 %.

Процент теплых дней с суточной максимальной температурой воздуха выше 90-го процентиля в 2017 г. по территории Казахстана составлял от 8 % до 26 % (рисунок 2.6 а). В северных и центральных районах страны экстремально высокий суточный максимум температуры воздуха наблюдался 8-16 % дней. На большей части западных регионов страны, а также в Кызылординской, Туркестанской, Восточно-Казахстанской, Жамбылской областях теплые дни наблюдались в 16 - 26 % случаях. Закономерности распределения по территории Казахстана значений данного индекса во многом согласуется с распределением количества жарких дней.

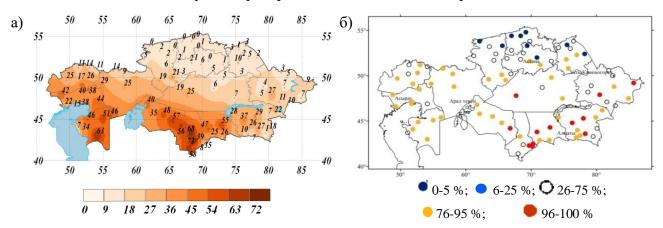


Рисунок 2.5 – Количество дней (а) и вероятность непревышения количества дней (б) в 2017 г. с температурой воздуха выше 35 °C. Вероятности рассчитаны за период 1941 - 2017 гг.

Процент холодных ночей в году, когда суточная минимальная температура воздуха была ниже 10-го процентиля характеризует повторяемость случаев с экстремально низкими суточными температурами (рисунок 2.6 б). В 2017 г. процент холодных ночей на большей части территории Казахстана, в основном, составлял от 6 % до 10 % случаев, максимальное количество холодных ночей наблюдались в Аккудуке (Мангистауская область) в 15 % случаев. Данный индекс во многом согласуется с распределением индекса морозных дней (индекс FD0).

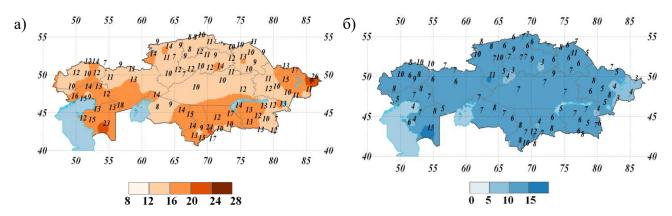


Рисунок 2.6 – Процент случаев в 2017 г., когда суточная максимальная температура была выше 90-го процентиля (а) и суточная минимальная температура была ниже 10-го процентиля (б)

На рисунке 2.7 а показана *общая продолжительность волн тепла* на территории Казахстана в 2017 г. (сумма дней, когда, как минимум, 6 последовательных дней суточная максимальная температура воздуха была выше 90-го процентиля). Максимальная суммарная продолжительность волн тепла от 20 дней до 32 дней наблюдалась в некоторых районах Мангистауской, Кызылординской, Туркестанской и Восточно-Казахстанской областях. На некоторых станциях Костанайской, Карагандинской, Павлодарской, Алматинской и Актюбинской областей продолжительность волн тепла составила 6-14 дней.

Сумма дней за год, когда, как минимум, 6 последовательных дней суточная минимальная температура воздуха была ниже 10-го процентиля, характеризует общую продолжительность волн холода. В 2017 г. лишь на некоторых станциях Мангистауской, Павлодарской, Алматинской, Туркестанской, Восточно-Казахстанской областей наблюдались волны холода (рисунок 2.7 б), на двух МС Кушмурун и Житикара (Костанайская область) их продолжительность составила 12-16 дней, и наблюдались они в холодный период года.

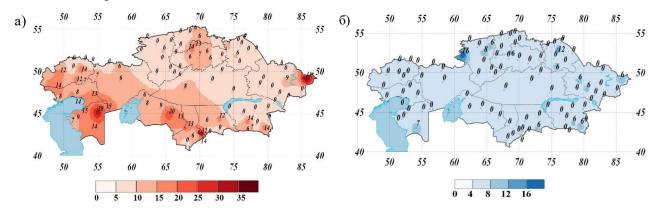


Рисунок 2.7 – Общая сумма дней в 2017 г., когда как минимум 6 последовательных дней суточная максимальная температура воздуха была выше 90-го процентиля (а) и как минимум 6 последовательных дней суточная минимальная температура воздуха была ниже 10-го процентиля (б)

На рисунке 2.8 представлено пространственное распределение **продолжительности вегетационного периода** в 2017 г. (период между первой датой, когда средняя суточная температура пятидневки была \geq 5 °C, и последней даты, когда средняя суточная температура пятидневки была \leq 5 °C). В 2017 г. минимальный вегетационный период (160-180 дней) наблюдался в северных регионах страны. В южной половине Казахстана (за исключением горных районов) период вегетации составил более 220 дней, на крайнем юге - более 260 дней, максимум наблюдался в Шымкенте и составлял 277 дней в году.

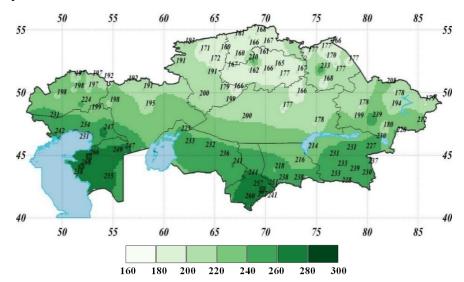


Рисунок 2.8 – Продолжительность вегетационного периода (дни) в 2017 г.

На рисунке 2.9 представлено *количество дней с морозом*, *когда суточная максимальная температура воздуха опускалась ниже* θ $^{\bullet}C$. В северных регионах страны таких дней в 2017 г. было более 100, местами более 120 дней, минимальное количество дней с дневными морозами, 14-15 дней, наблюдалось в южных областях.

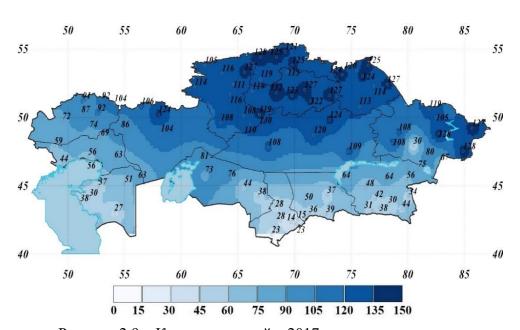


Рисунок 2.9 – Количество дней в 2017 г. с дневными заморозками

Количество дней с жесткими морозами, когда минимальная температура воздуха была ниже 20 °С на территории Казахстана в 2017 году в южных регионах страны таких дней либо не наблюдалось либо их было не более 15 дней, в северных регионах Казахстана такое количество дней составило от 30 до 40, местами 50-60 дней в году (рисунок 2.10).

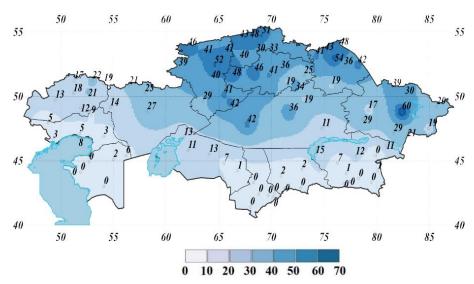


Рисунок 2.10 – Количества дней с жесткими морозами в 2017 году

Количество дней с температурой выше 10 °С характеризует период активной вегетации. В 2017 году в южных регионах таких дней наблюдалось от 180 дней до 232 дней в году. В северных и центральных регионах республики от 137 дней до 180 дней в году (рисунок 2.11).

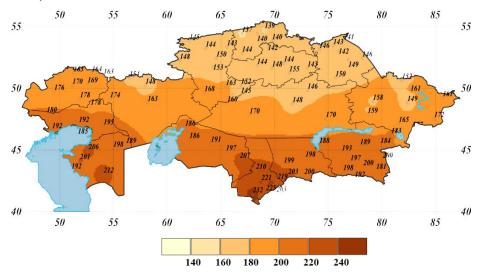


Рисунок 2.11 – Количества дней со среднесуточной температурой выше 10 °C в 2017 году

Большой интерес представляет собой *индекс Hddheat*, показывающий *сумму температур за отопительный период*, которая компенсируется за счет отопления жилых и производственных помещений (рисунок 2.12). Данный индекс помогает определить количество необходимой энергии для отопления. Начало отопительного периода

устанавливается при среднесуточной температуре наружного воздуха ниже +8 °C в течение 5 суток подряд осенью, а окончание отопительного периода — устойчивый переход средней суточной температуры воздуха через +8 °C весной.

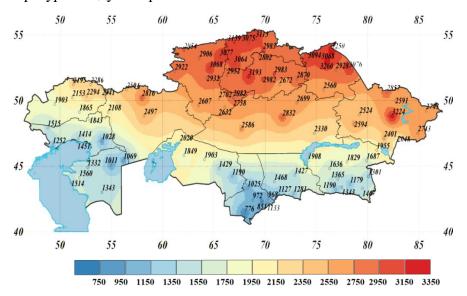


Рисунок 2.12 – Сумма температур за отопительный сезон 2017 года

Суммы температур за отопительный период в северной половине территории Казахстана составили от $2750\,^{\circ}\text{C}$ до $3350\,^{\circ}\text{C}$, в южных регионах — от $750\,^{\circ}\text{C}$ до $2350\,^{\circ}\text{C}$. Суммы температур за отопительный сезон наименьшие в Туркестанской области.

2.2 Наблюдаемые на территории Казахстана изменения температуры воздуха

На рисунках 2.13 - 2.14 представлены временные ряды осредненных по территории Казахстана и административных областей средних годовых и сезонных аномалий температуры приземного воздуха за период 1941 - 2017 гг., а также линейные тенденции изменения температуры воздуха за период 1976 - 2017 гг. Аномалии рассчитаны относительно базового периода 1981-2010 гг. Линейные тренды дают наглядную информацию о постепенном повышении среднегодовых и сезонных температур приземного воздуха за последние десятилетия. В таблице 2.4 представлены оценки изменения температуры воздуха за период 1976 - 2017 гг.: коэффициент линейного тренда, характеризующий среднюю скорость изменения аномалии температуры воздуха; и коэффициент детерминации, показывающий вклад тренда в общую дисперсию.

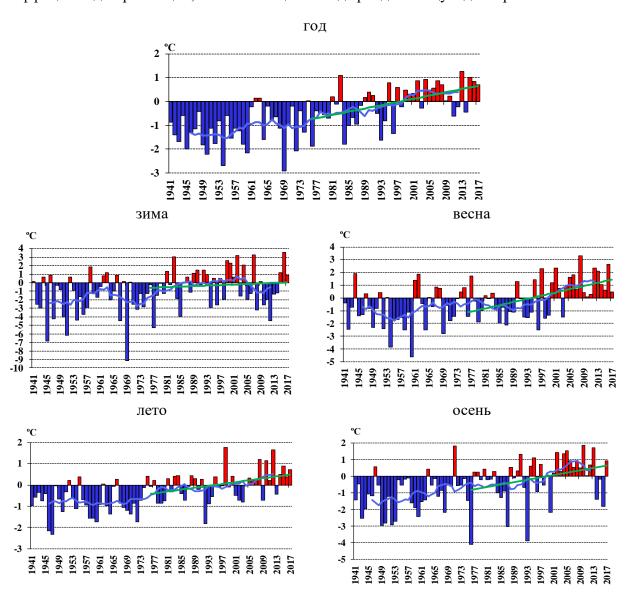


Рисунок 2.13 — Временные ряды аномалий годовых и сезонных температур воздуха (°С), осредненных по территории Казахстана за период 1941 - 2017 гг. Аномалии рассчитаны относительно базового периода 1981 - 2010 гг. Линейный тренд за период 1976-2017 гг. выделен зеленым цветом. Сглаженная кривая получена 11-летним скользящим осреднением

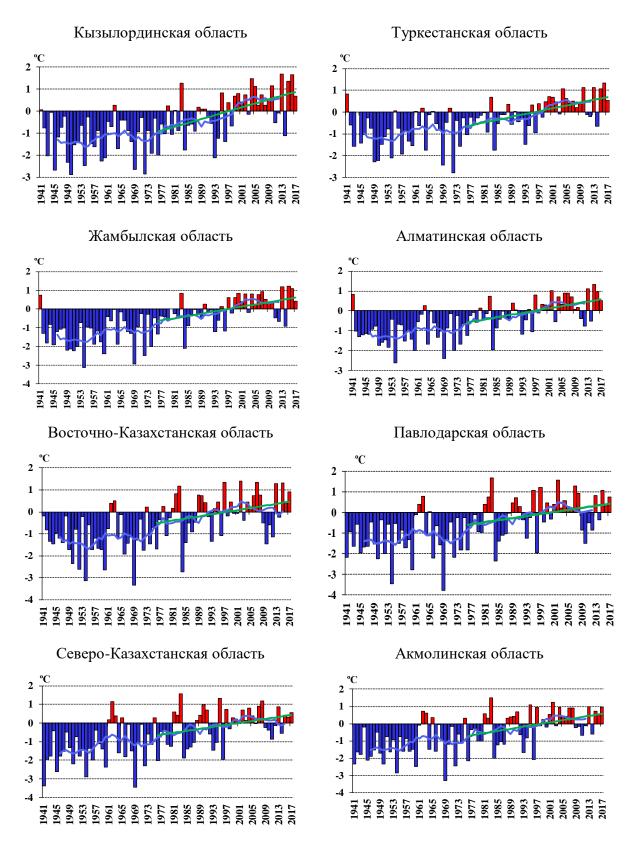


Рисунок 2.14 — Временные ряды аномалий годовых температур воздуха (°С), осредненных по областям Казахстана за период 1941 - 2017 гг. Аномалии рассчитаны относительно базового периода 1981 - 2010 гг. Линейный тренд за период 1976-2017 гг. выделен зеленым цветом. Сглаженная кривая получена 11-летним скользящим осреднением, Лист 1

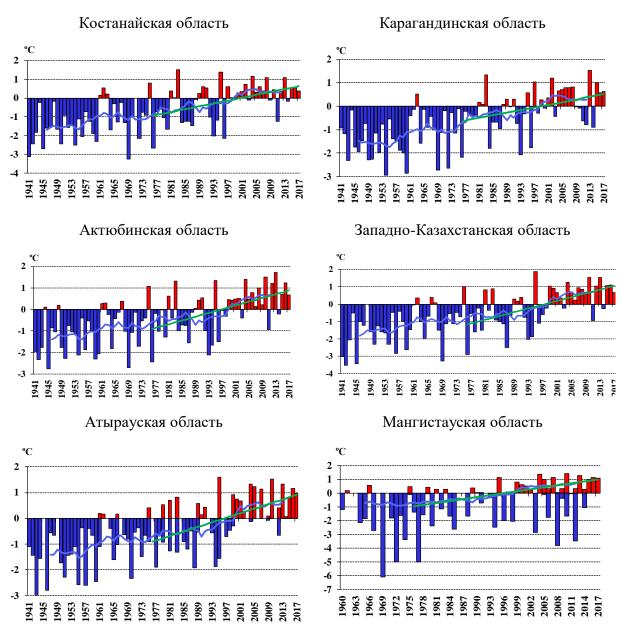


Рисунок 2.14 — Временные ряды аномалий годовых температур воздуха за период 1941 - 2017 гг., осредненных по областям Казахстана. Аномалии рассчитаны относительно базового периода 1981 - 2010 гг. Линейный тренд за период 1976-2017 гг. выделен зеленым цветом. Сглаженная кривая получена 11-летним скользящим осреднением, Лист 2

В среднем по территории Казахстана за период 1976 - 2017 гг. повышение среднегодовой температуры воздуха составляет 0.34 °C каждые 10 лет. Наибольшие темпы роста наблюдаются в весенний период (0.63 °C/10 лет), наименьшие в зимний (0.16 °C/10 лет). Вклад тренда в суммарную дисперсию среднегодовых температур составляет 27 %, для остальных сезонов – от 1 % зимой до 26 % весной. Во все сезоны, кроме зимнего, повышение температуры статистически значимое (таблица 2.4).

Более детальная информация об изменении средней годовой, сезонной и месячной температуры воздуха (в $^{\circ}$ C/10 лет) по территории Казахстана за период 1976 - 2016 гг. представлена на рисунке 2.15-2.16.

Таблица 2.4 – Характеристики линейного тренда аномалий температуры приземного воздуха, осреднённых по территории Казахстана и его областей за период 1976 - 2017 гг.

Регион/область	Год		Зима		Весна		Лето		Осень	
	a*	**R ²	a	\mathbb{R}^2	a	\mathbb{R}^2	a	\mathbb{R}^2	a	\mathbb{R}^2
Казахстан	0,34	27	0,16	1	0,63	26	0,22	14	0,36	10
Алматинская	0,29	23	0,12	1	0,58	24	0,20	15	0,27	9
Акмолинская	0,31	16	0,08	0	0,72	23	0,03	0	0,39	7
Актюбинская	0,44	27	0,26	2	0,61	15	0,33	10	0,44	14
Атырауская	0,44	30	0,36	4	0,48	16	0,47	30	0,42	14
Восточно- Казахстанская	0,24	10	-0,04	0	0,64	21	0,16	7	0,22	3
Жамбылская	0,31	25	0,19	1	0,58	24	0,19	11	0,30	10
Западно- Казахстанская	0,54	33	0,43	4	0,61	17	0,59	24	0,50	16
Карагандинская	0,28	15	0,07	0	0,77	26	0,03	0	0,25	4
Костанайская	0,39	21	0,16	1	0,62	15	0,17	3	0,55	14
Кызылординская	0,44	29	0,31	2	0,82	30	0,27	16	0,36	10
Мангистауская	0,32	34	0,20	3	0,35	16	0,45	40	0,29	14
Павлодарская	0,25	9	-0,03	0	0,74	27	0,05	0	0,26	3
Северо- Казахстанская	0,27	12	0,02	0	0,55	16	0,03	0	0,44	8
Туркестанская	0,33	32	0,25	2	0,53	23	0,21	11	0,34	13

^{*} а – коэффициент линейного тренда, °С/10 лет

Тренды средней годовой температуры по всей территории Казахстана были положительные и статистически значимые. Более быстрыми темпами теплеет в западных регионах Казахстана (от 0.26° C/10 лет до 0.53° C/10 лет), более медленными темпами в восточных регионах (от 0.18° C/10 лет до 0.45° C/10 лет).

Зимой наибольшая скорость роста температуры воздуха отмечена в южных и западных регионах — от $0.25\,^{\circ}\text{C}/10$ лет до $0.56\,^{\circ}\text{C}/10$ лет. В январе в северо-восточной части республики отрицательная тенденция изменения температуры воздуха составила от $0.09\,^{\circ}\text{C}/10$ до $0.56\,^{\circ}\text{C}/10$ лет В декабре незначительное понижение температуры воздуха от $0.01\,^{\circ}\text{C}/10$ до $0.015\,^{\circ}\text{C}/10$ лет наблюдалось на юго-востоке республике. Все полученные тренды изменения зимних температур воздуха статистически незначимы, лишь на станции Уржар (Восточно-Казахстанская область) незначительное понижение температуры воздуха $(0.56\,^{\circ}\text{C}/10$ лет) было статистически достоверным.

Весной по всей территории Казахстана наблюдается наиболее интенсивное потепление от $0.42\,^{\circ}\text{C}/10$ лет до $0.79\,^{\circ}\text{C}/10$ лет. Наибольшая скорость увеличения температуры воздуха отмечена в марте (от $0.63\,^{\circ}\text{C}/10$ лет до $1.4\,^{\circ}\text{C}/10$ лет). Все тренды весеннего периода статистически достоверны.

^{**} R² – коэффициент детерминации, %

^{***«}жирным» шрифтом выделены статистически значимые тенденции

Летом устойчивые положительные тенденции наблюдались в восточный, южных и западных районах республики (от $0.11\,^{\circ}\text{C}/10$ лет до $0.45\,^{\circ}\text{C}/10$ лет соответственно), в центральных и северных районах Казахстана незначительные положительные тенденции (от $0.003\,^{\circ}\text{C}/10$ лет до $0.017\,^{\circ}\text{C}/10$ лет) были статистически незначимы. Незначительное похолодание в июле наблюдается в северных и центральных районах (от $0.02\,^{\circ}\text{C}/10$ лет до $0.29\,^{\circ}\text{C}/10$ лет). Однако статистически достоверные отрицательные тенденции ($0.10\,^{\circ}\text{C}/10$ лет) отмечены только в Карагандинской области.

Осенью за последние 4-и десятилетия устойчивое повышение температуры воздуха отмечено на северо-западе и юге республики (от 0.26 °C/10 лет до 0.51 °C/10 лет). Основной вклад внесли месяцы сентябрь и октябрь, когда статистически значимая положительная тенденция температуры воздуха составила 0.15-0.65 °C/10 лет.

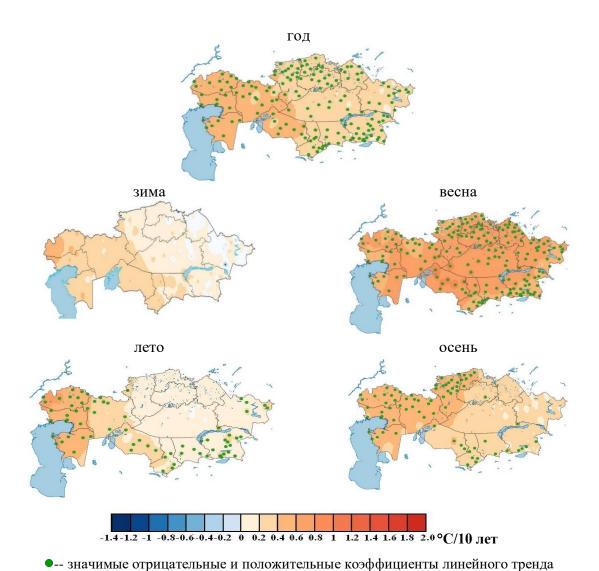
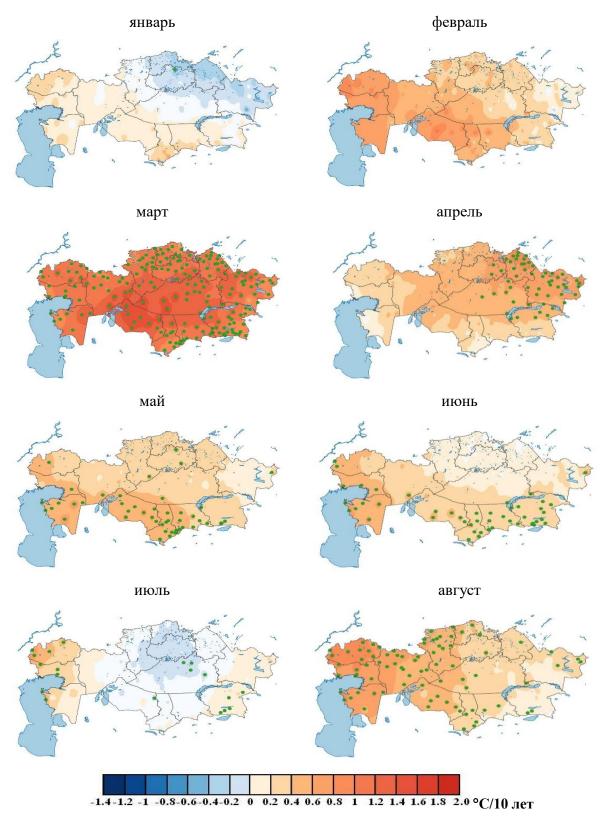
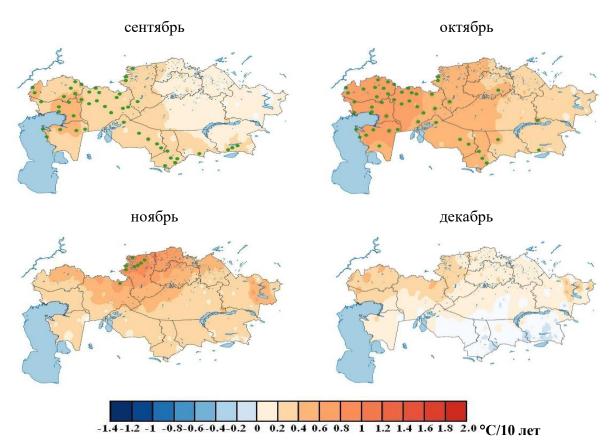




Рисунок 2.15 — Пространственное распределение значений коэффициента линейного тренда средней годовой и сезонной температуры приземного воздуха (°С/10 лет)

•-- значимые отрицательные и положительные коэффициенты линейного тренда

Рисунок 2.16 — Пространственное распределение значений коэффициента линейного тренда средней месячной температуры приземного воздуха (°C/10 лет), рассчитанного по данным наблюдений за период 1976 - 2017 гг., $\mathit{Лист 1}$

•-- значимые отрицательные и положительные коэффициенты линейного тренда

Рисунок 2.16 — Пространственное распределение значений коэффициента линейного тренда средней месячной температуры приземного воздуха (°C/10 лет), рассчитанного по данным наблюдений за период 1976 - 2017 гг. Лист 2

2.3 Тенденции в экстремумах температуры приземного воздуха

За последние более чем 40 лет в Казахстане прослеживаются, в основном, положительные тенденции в суточных максимумах температуры приземного воздуха, но тенденции, в основном, незначимые (рисунок 2.17). На некоторых станциях Атырауской, Мангистауской, Жамбылской, Павлодарской, Кызылординской и Восточно-Казахстанской областях зафиксированы значимые положительные тенденции суточных максимумов температуры воздуха в пределах 0,21 - 0,90 °C/10 лет. Значимое уменьшение суточного максимума температуры приземного воздуха наблюдается на станции Шардара (на 0,20 °C/10 лет), что связано с тем что, данная станция окружена Шардаринским водохранилищем, которое оказывает локальный охлаждающий эффект.

Статистически достоверная тенденция увеличения количества очень жарких дней с температурой воздуха выше 35 °С наблюдается в Западно-Казахстанской, Актюбинской, Атырауской, Мангистауской, Кызылординской, Туркестанской областях: на 4-8 дней каждые 10 лет (рисунок 2.18). На 1-3 дня каждые 10 лет увеличивается повторяемость жарких дней в юго-восточных регионах. На остальной территории республики

наблюдалось статистически незначимое как увеличение, так и сокращение числа дней с температурой более 35 °C.

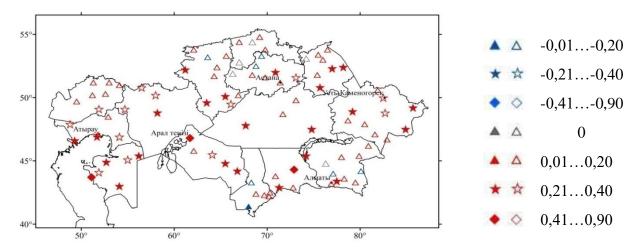


Рисунок 2.17 – Пространственное распределение коэффициента линейного тренда значений суточной максимальной температуры воздуха(°С/10 лет) за период 1976 - 2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда

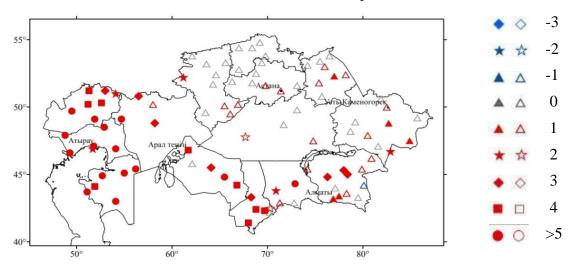


Рисунок 2.18 — Пространственное распределение коэффициента линейного тренда числа дней с температурой воздуха выше 35 °C (дни/10 лет) за период 1976-2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда

Практически повсеместно наблюдается тенденция уменьшения повторяемости случаев с *ночными морозами* на территории республики, когда суточная минимальная температура опускается ниже $0\,^{\circ}$ С (рисунок 2.19). В основном, скорость сокращения количества таких случаев составляет от 3 до 6 дней каждые $10\,$ лет.

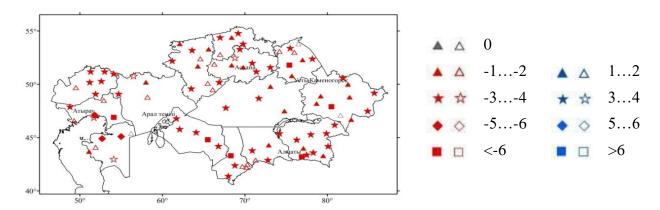


Рисунок 2.19 — Пространственное распределение коэффициента линейного тренда числа случаев с суточным минимумом температуры воздуха ниже 0 °C (дни/10 лет) за период 1976 - 2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда

Индекс суточной амплитуды температуры воздуха показывает (рисунок 2.20), что за последние 40 лет в западной половине Казахстана наблюдались, в основном, тенденции к увеличению суточной амплитуды на 0,1-0,4 °C/10 лет, часто тенденции статистически значимые. На юго-востоке и востоке, наоборот, часто наблюдались значимые тенденции к уменьшению суточной амплитуды на 0,1-0,4 °C/10 лет. В северных и центральных регионах тенденции были, в основном, незначительны.

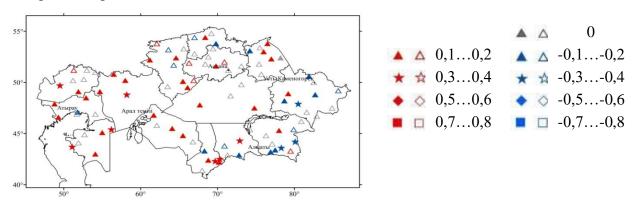


Рисунок 2.20 — Пространственное распределение коэффициента линейного тренда суточной амплитуды температуры воздуха (°С/10 лет) за период 1976 - 2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда

На большей части территории Казахстана наблюдалось значимое уменьшение количества *дней с морозом*, на 4 - 8 дней/10 лет (рисунок 2.21). Исключение составляют южные, юго-восточные и восточные регионы, где повторяемость таких случаев хоть и уменьшалась, но не значительно.

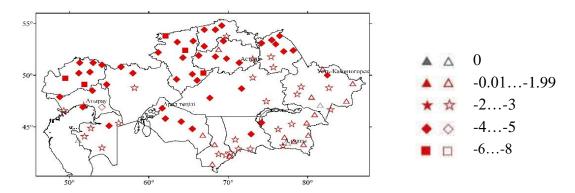
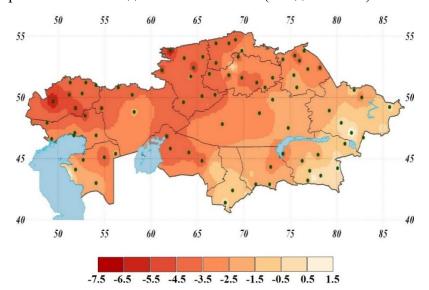
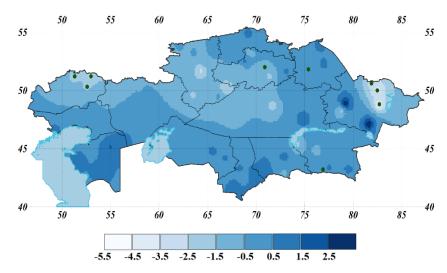
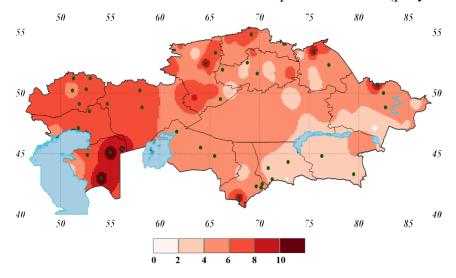



Рисунок 2.21 — Пространственное распределение коэффициента линейного тренда количества дней, когда суточная максимальная температура была ниже 0°С (°С/10 лет) за период 1976 - 2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда


Наибольшая скорость сокращения (4–8 дня/10 лет) количества дней с дневными заморозками (когда суточный максимум температуры ниже 0 °C) на территории Казахстана наблюдается в основном на северо-западе республики и местами в центральной части (индекс ID, рисунок 2.22). В южных и юго-восточных регионах количество дней с дневными заморозками более медленными темпами (1-3 дня/10 лет).

значимые отрицательные и положительные коэффициенты линейного тренда

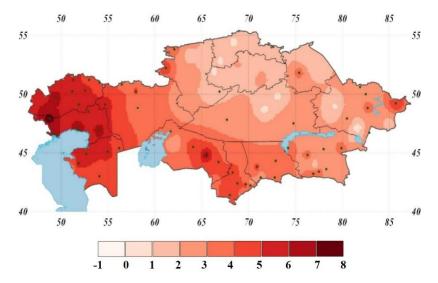
Рисунок 2.22 — Пространственное распределение коэффициента линейного тренда числа дней с дневными заморозками (дни/10 лет) за период 1976—2017 гг.


На территории республики повсеместно на 1–3 дня/10 лет сокращается количество дней с *жесткими морозами (когда суточный минимум температуры воздуха ниже минус* 20 °C, индекс FDm20, рисунок 2.23), но значимое сокращение (2–3 дня/10 лет) отмечено лишь на некоторых метеостанциях Западно–Казахстанской области и на северовостоке республики.

• – значимые отрицательные и положительные коэффициенты линейного тренда

Рисунок 2.23 – Пространственное распределение коэффициента линейного тренда количества суток в году с жесткими морозами (когда суточный минимум температуры воздуха ниже минус 20 °C)

Общая за год продолжительность воли тепла (когда, как минимум, 6 последовательных дней суточная максимальная температура воздуха была выше 90-го процентиля) на территории республики повсеместно увеличивается. Наибольшая скорость увеличения составила 9–10 дней/10 лет на метеостанциях Мангистауской области, а также на некоторых метеостанциях Костанайской и Павлодарской областей (рисунок 2.24).



• – значимые отрицательные и положительные коэффициенты линейного тренда

Рисунок 2.24 — Пространственное распределение коэффициента линейного тренда общей за год продолжительности волн тепла (дни/10 лет) за период 1976 - 2017 гг.

С северо–востока на юго–запад республики хорошо прослеживается тенденция увеличения продолжительности волн тепла в теплый периода (когда суточный максимум температуры воздуха выше 90-го процентиля, индекс HWF, на рисунке 2.25. Наибольшая скорость увеличения продолжительности волн тепла (4-7 дней/10 лет)

наблюдается в Западно-Казахстанской, Атырауской и Мангистауской областях. В Кызылординской и Туркестанской областях положительная тенденция составляет 3-5 дней/10 лет.

• – значимые отрицательные и положительные коэффициенты линейного тренда

Рисунок 2.25 — Пространственное распределение коэффициента линейного тренда общей продолжительности волн тепла в теплый период (дни/10 лет) за период 1976 - 2017 гг.

Количество дней со среднесуточной температурой воздуха выше или равно 10 °C (индекс ТМ10 а) за период 1976—2017 гг. по территории Казахстана увеличивается на 3—5 дней/10 лет. На северо—востоке и юго—западе положительная тенденция составляет 3 дня/10 лет (рисунок 2.26).

• – значимые отрицательные и положительные коэффициенты линейного тренда

Рисунок 2.26 — Пространственное распределение коэффициента линейного тренда количества дней со среднесуточной температурой ≥ 10 °C (дни/10 лет) за период 1976 - 2017 гг.

Таким образом, тенденция в индексах температуры приземного воздуха показывает, что за период 1976—2017 гг. увеличивается: повторяемость дней с высокими температурами, продолжительность волн тепла и продолжительность вегетационного периода, а также уменьшается повторяемость дней в году с отрицательными температурами, дневными заморозками и жесткими морозами.

3 АТМОСФЕРНЫЕ ОСАДКИ

3.1 Аномалии количества осадков на территории Казахстана в 2017 году

Месячное количество осадков в 2017 году, осреднённое по территории Казахстана, было, в основном, нижеклиматической нормы (рисунок 3.1). Дефицит количества осадков составил от 2 % (июнь) до 40 % (июль). В феврале и октябре количество осадков превысило климатическую норму на 28 %, в апреле на 22 %.

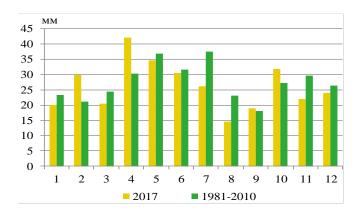


Рисунок 3.1 - Месячные суммы осадков в 2017 году и нормы за период 1981-2010 гг., осреднённые по территории Казахстана

На рисунке 3.2 представлено территориальное распределение годового и сезонного количества осадков в 2017 году, выраженное в процентах нормы за период 1981-2010 гг., а также приведены вероятности непревышения годовых и сезонных сумм осадков в данном году. Вероятность непревышения характеризует частоту появления соответствующего значения аномалии в ряду наблюдений.

В 2017 году годовое количество осадков в среднем на территории Казахстана было в пределах климатической нормы и составило 96 % нормы (313,7 мм). Экстремально сухо было в районах метеостанций Бейнеу (Мангистауская область), Шиили (Кызылординская область), Кордай (Жамбылская область) и Кокпекты (Восточно-Казахстанская область). Вероятность непревышения здесь составила 0-5 % (таблица 3.1, рисунок 3.2).

Зима (декабрь 2016 – февраль 2017 гг.)

Зима на территории Казахстана по количеству выпавших осадков занимает 2-ое место (132 % нормы) за период наблюдений с 1941 по 2017 гг. Экстремально влажно было в Акмолинской (174 % нормы), Павлодарской (156 % нормы) и Туркестанской(161 % нормы) областях. Вероятность непревышения в этих районах составила от 90 до 100 %. Зимний сезон в указанных регионах вошел в 10 % экстремально влажных сезонов (рисунок 3.2, таблица 3.1, 3.2). Исторические максимумы были перекрыты на следующих метеостанциях:

- Павлодарская область: МС Красноармейка -76,3 мм (прежний максимум 60,5 мм); МС Павлодар- 83,1 мм (81,20 мм); МС Шалдай 76,4мм (71,6 мм).
- Алматинской область: МС Алматы-Каменская плато- 214,1 мм (211,6 мм);
- Туркестанская область: МС Шымкент- 370 мм (363,2 мм).

Таблица 3.1 – Регионально осредненные годовые и сезонные аномалии количества осадков в 2017 г: **vR** - отклонения от средних многолетних за 1981 - 2010 гг., мм; $P(r \le R_{2017})$ - вероятность непревышения (в скобках), рассчитанная по данным за период 1941 - 2017 гг. и выражена в %; **RR** - отношение R_{2017} к норме, выраженное в %

Регион/область	Год		Зима		Весна		Лето		Осень	
	vR (P)	RR	vR (P)	RR	vR (P)	RR	vR (P)	RR	vR (P)	RR
Казахстан	-14,4 (32)	96	23,6(100)	132	5,7(56)	102	-21,1 (14)	76	-2,3 (43)	98
Алматинская	-5,7 (44)	98	19,3 (82)	124	26,1 (65)	118	-36,1 (18)	74	-3,9 (51)	96
Акмолинская	-20,1 (15)	86	36,7 (98)	174	-4,3 (47)	95	-44,2 (11)	65	3,8 (53)	105
Актюбинская	-10,0 (44)	99	22,4 (89)	137	3,7 (71)	105	-21,4 (23)	76	16,7 (75)	132
Атырауская	-23,1 (22)	85	10,9 (69)	131	2,7 (55)	108	-27,0 (13)	42	0,0 (52)	98
Восточно-Казахстанская	-35,8 (18)	91	9,9 (71)	113	-27,2 (14)	67	-9,6 (30)	95	7,3 (60)	105
Жамбылская	16,3 (63)	104	33,8(90)	142	50,2 (85)	136	-22,6 (22)	62	-23,5 (19)	68
Западно-Казахстанская	-38,4 (25)	87	9,1 (75	117	-1,3 (56)	98	8,0 (21)	62	-8,5 (31)	91
Карагандинская	-3,4 (44)	99	6,8 (73)	112	-7,1 (39)	89	-15,9 (35)	78	4,4 (59)	112
Костанайская	-23,1 (36)	91	10,7 (76)	122	5,1 (56)	106	-14,1(27)	82	-7,4 (38)	92
Кызылординская	-5,2 (53)	97	4,7(65)	111	-2,9 (50)	95	-6,3 (43)	75	-1,3 (47)	98
Мангистауская*	-15,7(34)	89	16,7 (92)	155	-3,1 (57)	91	-14,1 (18)	61	2,0 (57)	104
Павлодарская	22,5 (64)	107	23,3 (100)	156	8,7 (76)	115	-3,9 (47)	99	2,7 (52)	104
Северо-Казахстанская	-36,6 (27)	89	17,8 (90)	129	18,0 (82)	125	-29,5 (19)	81	-12,9 (39)	85
Туркестанская	44,4 (68)	110	99,1 (100)	161	22,8 (61)	114	-11,5 (34)	65	-24,2 (28)	66

Примечания: 1. для Мангистауской области оценка проводилась за период 1960-2017 гг.

Весна

Весной количество осадков по всей республике было близко к норме - 102 %, за исключением Восточно-Казахстанской области, где атмосферных осадков выпало 67 % нормы (вероятность непревышения 14 %). Экстремально сухо в этой области было в районе станции Аксуат (вероятность непревышения 2 %). Экстремально влажно зафиксировано в районе станций Мугоджарская (Актюбинская область) и Тараз (Жамбылская область), вероятность непревышения на этих метеостанциях составила 97 %. Весенний сезон в районе этих станций включен в 10 % экстремально сухих и экстремально влажных сезонов соответственно (рисунок 3.2, таблица 3.1).

Лето

Лето 2017 года выдалось сухим, как и предыдущий 2016 год (рисунок 3.2, таблица 3.1). Количество выпавших осадков за весь сезон составило 76 % климатической нормы (вероятность непревышения 14 %). Наиболее сухо было на западе и юге Казахстана, вероятность непревышения в этих районах составила от 11 % до 23 %. Экстремально сухо

^{2.} значения выше 95-го и ниже 5-го процентиля выделены жирным шрифтом и ярким цветом

было на метеостанциях Тайпак (Западно-Казахстанская область), Темир, Новоалексеевка, Новороссийское (Актюбинская область), Кокпекты и Лениногорск (Восточно-Казахстанская область), Астана (Акмолинская область). Летний сезон в этих районах вошел в 10 % экстремально сухих сезонов (рисунок 3.2, таблица 3.1).

Таблица 3.2 — Регионально осредненные месячные аномалии количества осадков в 2017 г.: \mathbf{vT} — отклонения от средних многолетних за 1981 - 2010 гг., мм; $\mathbf{P}(\mathbf{r} \leq \mathbf{R}_{2017})$ — вероятность непревышения (в скобках), рассчитанная по данным за период 1941 — 2017 гг. и выражена в %

Регион/ область	12	1	2	3	4	5	6	7	8	9	10	11
	(2016)											
Казахстан	17.24	-3,31	8,78	-3,81	11,93	-2,11	-1,06	-11,34	-8,68	0,88	4,52	-7,76
	(97)	(42)	(94)	(31)	(80)	(47)	(43)	(22)	(19)	(47)	(68)	(23)
Алматинская	20,4	-5,69	3,99	-16,5	38,31	4,15	7,16	-39,48	-3,84	4,46	-10,47	2,19
	(90)	(46)	(73)	(11)	(92)	(59)	(59)	(2)	(44)	(64)	(39)	(63)
Акмолинская	33,5	2,44	0,21	0,76	1,36	-6,4	-16,84	0,7	-28,2	-11,53	7,71	7,66
	(100)	(86)	(61)	(65)	(69)	(65)	(85)	(36)	(88)	(55)	(40)	(92)
Актюбинская	21,96	-4,93	4,91	-0,54	1,33	2,91	-7,43	-3,34	-10,68	-6,51	23,95	-0,68
	(93)	(38)	(80)	(56)	(61)	(65)	(39)	(44)	(28)	(23)	(96)	(50)
Атырауская	8,9	-5,15	7,4	13,5	-10,15	-0,4	-8,15	-7,75	-11,05	-9,5	10,9	-1,35
	(80)	(19)	(82)	(85)	(28)	(56)	(31)	(30)	(17)	(3)	(80)	(48)
Восточно-	9,19	-5,36	5,02	-9,55	1,7	-19,32	6,17	-5,59	-10,23	21,71	4,09	-18,38
Казахстанская	(78)	(35)	(75)	(9)	(50)	(19)	(61)	(38)	(18)	(93)	(59)	(5)
Жамбылская	18,66	-9,39	24,0	-10,7	43,23	17,56	-1,41	-17,9	-2,99	6,31	-10,74	-19,09
	(85)	(25)	(96)	(17)	(94)	(77)	(48)	(14)	(51)	(81)	(38)	(9)
Западно-	12,34	-12,28	9,44	0,8	0,86	-2,98	9,91	-17,66	-18,39	-11,06	6,19	-3,56
Казахстанская	(84)	(10)	(85)	(51)	(63)	(52)	(73)	(13)	(6)	(23)	(67)	(44)
Карагандинская	3,4	-2,98	5,86	4,82	8,23	-20,16	0,16	-16,89	0,67	2,66	5,99	-4,39
1 7	(76)	(51)	(80)	(71)	(68)	(9)	(53)	(19)	(56)	(57)	(71)	(52)
Костанайская	10,2	-2,47	2,1	-1,62	1,62	5,05	-9,83	1,55	-5,95	-11,03	14,07	-10,25
	(76)	(40)	(72)	(50)	(52)	(69)	(32)	(60)	(46)	(17)	(76)	(23)
Кызылординская	5,95	3,52	-4,7	-5,7	7,08	-4,27	-5,22	-4,97	3,93	-2,97	3,67	-1,98
1, ,	(73)	(72)	(32)	(23)	(73)	(55)	(42)	(30)	(81)	(23)	(67)	(60)
Мангистауская	16,1	0,31	-6,2	12,94	-12,64	2,33	-2,09	-6,06	-4,96	-6,74	9,2	-1,51
•	(96)	(58)	(17)	(86)	(12)	(74)	(47)	(33)	(5)	(7)	(86)	(52)
Павлодарская	16,56	1,92	6,48	0,2	-3,16	11,64	-5,54	14,2	-12,6	5,9	0,02	-3,2
	(98)	(64)	(88)	(59)	(53)	(89)	(44)	(77)	(19)	(63)	(55)	(43)
Северо-	18,34	-0,38	-1,2	5,48	3,68	8,96	-3,44	-1,0	-25,04	-12,66	14,23	-14,41
Казахстанская	(98)	(65)	(56)	(84)	(63)	(68)	(34)	(53)	(13)	(17)	(81)	(15)
Туркестанская	41,32	5,41	52,6	-2,99	26,97	-1,06	-5,18	-10,94	4,67	2,46	-0,24	-26,36
*	(90)	(60)	(98)	(40)	(80)	(60)	(38)	(27)	(80)	(76)	(59)	(18)

Примечания: 1. для Мангистауской области оценка проводилась за период 1960-2017 гг.; 2. значения выше 95-го или ниже 5-го процентиля выделены жирным шрифтом и ярким цветом.

Осень

Осенью 2017 года количество осадков на большей части территории Казахстана выпало в пределах климатической нормы - 98 %. Сухо было на некоторых метеостанциях Северо-Казахстанской, Жамбылской и Туркестанской областях. Экстремально сухо зафиксировано на метеостанциях Шолаккурган (Туркестанская область) и Уланбель (Жамбылская область). Вероятность непревышения на этих метеостанциях составила 5 % и 1 % соответственно. Осень в этих районах вошла в 10 % экстремально сухих сезонов (рисунок 3.2, таблица 3.1).

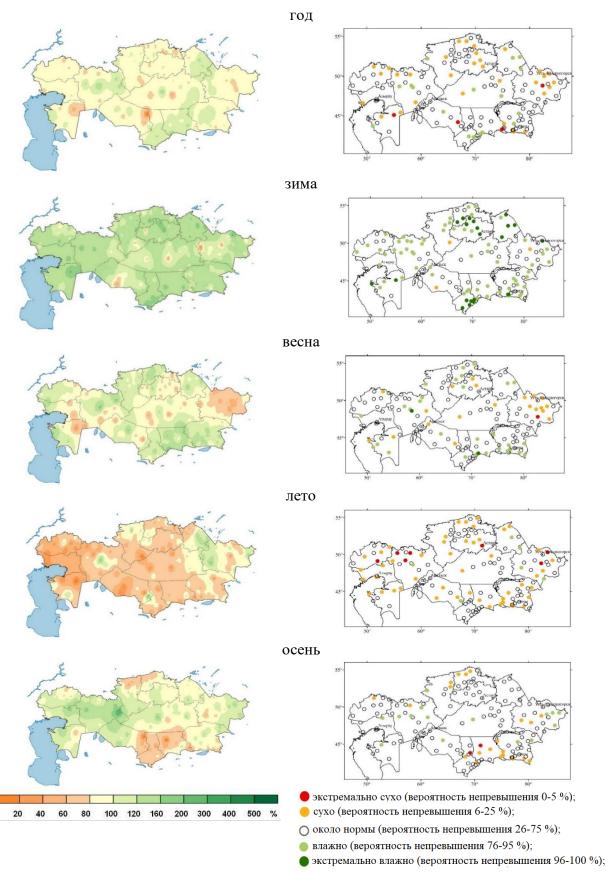


Рисунок 3.2 – Количество осадков в 2017 году, выраженное в % нормы, рассчитанной за период 1981-2010 гг. (слева), а также вероятности непрывышения количества осадков, наблюдавшиеся в 2017 году, рассчитанные по данным периода 1941-2016 гг. (справа).

Для оценки экстремальности количества осадков в 2017 году использовались индексы изменения климата, предложенные Всемирной Метеорологической Организацией. Ниже представлен анализ некоторых наиболее показательных индексов осадков и особенностей распределения их значений по территории Казахстана в 2017 году.

Максимумы суточного количества осадков в 2017 году (индекс Rx1day). На рисунке 3.3 красным цветом показаны значения абсолютных максимумов суточного количества осадков, определенные за период с начала открытия метеостанции по 2016 год, синим цветом — значения суточных максимумов, наблюдавшиеся в 2017 году. Абсолютный максимум суточного количества осадков в 2017 году не был перекрыт ни на одной метеостанции Казахстана.

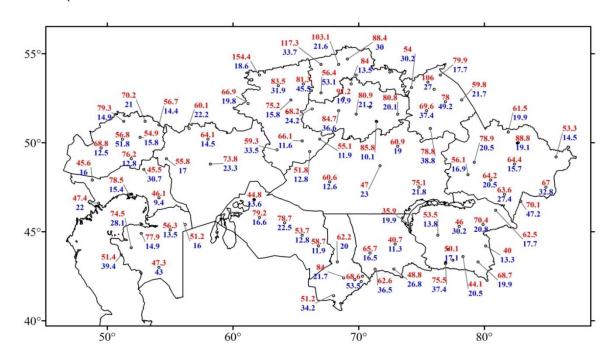


Рисунок 3.3 — Абсолютный максимум суточного количества осадков, выбранный за период с начала открытия метеостанции по 2016 год (нанесен красным цветом) и максимальное количество осадков, выпавшее за сутки в 2017 году (нанесен синим цветом), мм. Квадратом обозначены станции с обновленным рекордом

На рисунке 3.4 представлена доля количества осадков, выпавших за сутки с экстремально большим количеством осадков (более 95-го процентиля), в сумме осадков за весь 2017 год. Наибольшая доля экстремального количества осадков наблюдалась на метеостанциях Аккудук (45 %) и Павлодар (41 %). На 10-и метеостанциях юга Казахстана доля экстремальных осадков также достаточно высокая (30-38 %).

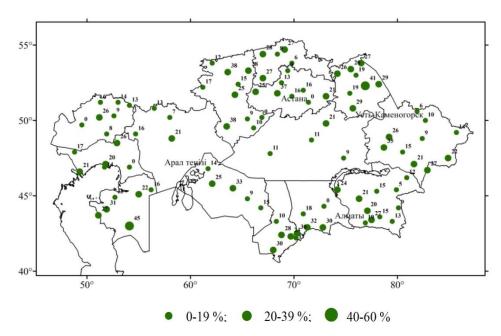


Рисунок 3.4 – Доля (в %) экстремального количества осадков в годовой сумме осадков в 2017 году. Экстремальное количество осадков рассчитано как сумма суточного количества осадков, превышающего 95-й процентиль

В условиях засушливого климата Казахстана очень важным является индекс CDD, который показывает *максимальную продолжительность бездождного периода*, когда суточное количество осадков составляет менее 1 мм (рисунок 3.5). В 2017 году максимальная продолжительность бездождного периода была зафиксирована на станциях Ганюшкино, Шардара, Шиели (102, 116 и 125 дней в году соответственно). На юге, юго-западе и востоке республики продолжительность бездождного периода была от 30 дней в году до 80 дней в году, а в северных регионах страны от 28 дней в году до 116 дней в году.

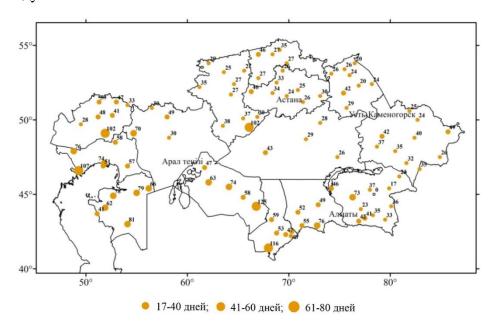


Рисунок 3.5 – Максимальная продолжительность бездождного периода (в днях) в 2017 году

В 2017 году максимальная продолжительность дождливого периода, когда количество выпавших осадков было равно или больше 1 мм (индекс CWD), представлена на рисунке 3.6. По результатам расчета индекса, максимальная продолжительность периода с осадками составила от 6 до 9 дней. Наибольший по продолжительности дождливый период наблюдался на метеостанциях Тасарык и Аул Турара Рыскулова - 9 дней.

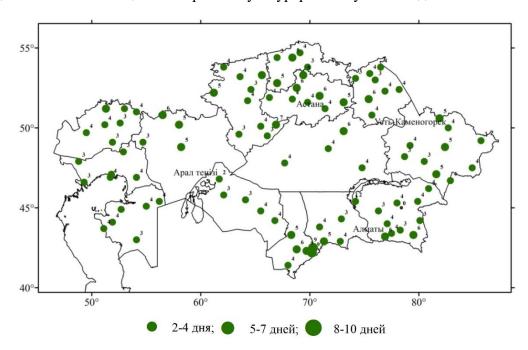
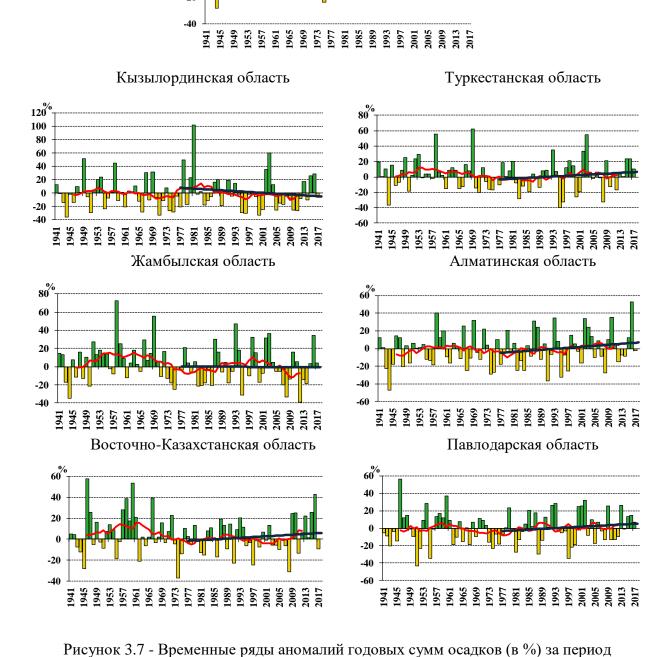



Рисунок 3.6 – Максимальная продолжительность периода (в днях) в 2017 году, когда количество выпавших осадков было равно или больше 1 мм

3.2 Наблюдаемые изменения количества осадков на территории Казахстана

В отличие от температуры воздуха, изменение режима атмосферных осадков на территории Казахстана за исследуемый период представляет собой более пеструю картину. Линейные тенденции в рядах месячных, сезонных и годовых суммах атмосферных осадков были оценены по данным 121-ой станции.

Временные ряды аномалий годовых и сезонных сумм осадков за период 1941-2017 гг., рассчитанных относительно базового периода 1981 - 2010 гг. пространственно осреднённых по территории Казахстана и областям дают общее представление о характере современных изменений режима атмосферных осадков. За последние десятилетия наблюдалось чередование коротких периодов с положительными и отрицательными аномалиями количества осадков (рисунок 3.7 и 3.8). В среднем по Казахстану за период 1976-2016 гг. наблюдалась тенденция увеличения годового количества атмосферных осадков на 5,9 мм/10 лет (рисунок 3.7, таблица 3.1). В областном разрезе практически по всем областям также отмечено увеличение количества осадков, И Западно-Казахстанская исключение составляет Кызылординская области, атмосферные осадки уменьшаются каждые 10 лет на 5,1 мм и 1,0 мм соответственно. Статистически достоверное увеличение годовых сумм осадков выявлено только в Северо-Казахстанской области (13 мм/10 % лет).

1941-2017 гг., пространственно осредненных по территории Казахстана и его областей. Аномалии рассчитаны относительно базового периода 1981-2010 гг. Линейный тренд за период 1976-2017 гг. выделен синим цветом. Сглаженная кривая получена 11-летним скользящим осреднением. Лист 1

Казахстан

40

20

46

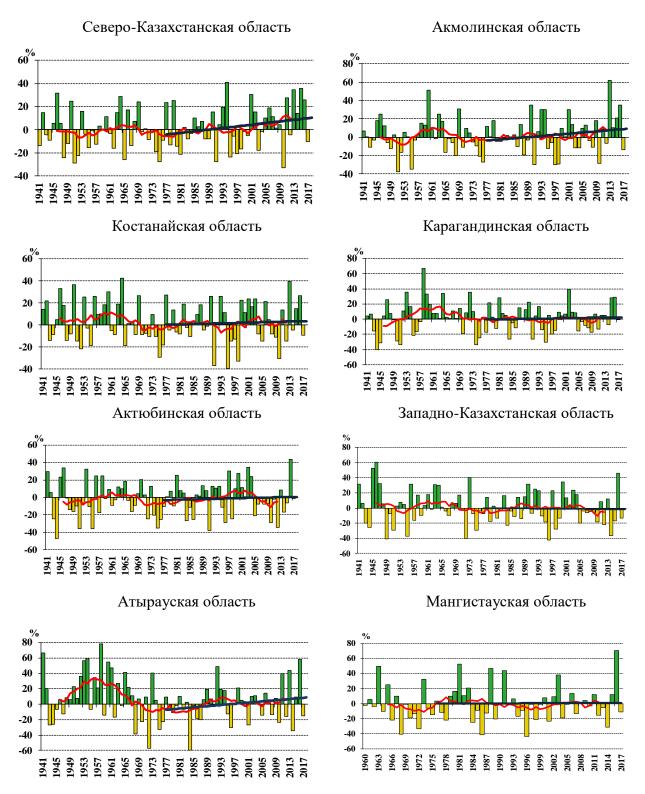


Рисунок 3.7 - Временные ряды и линейные тренды аномалий годовых сумм осадков (в %) за период 1941-2017 гг., пространственно осредненных по территории Казахстана и его областей. Аномалии рассчитаны относительно базового периода 1981-2010 гг. Линейный тренд за период 1976-2017 гг. выделен синим цветом. Сглаженная кривая получена 11-летним скользящим осреднением. Лист 2

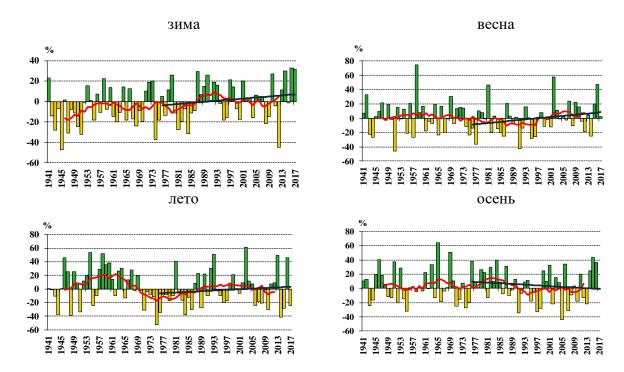


Рисунок 3.8 - Временные ряды и линейные тренды аномалий сезонных сумм осадков (в %) за период 1941-2017 гг., пространственно осредненных по территории Казахстана и его областей. Аномалии рассчитаны относительно базового периода 1981-2010 гг. Линейный тренд за период 1976-2017 гг. выделен синим цветом. Сглаженная кривая получена 11-летним скользящим осреднением. Лист 2

За период 1976-2017 гг. в среднем по областям во все сезоны наблюдается тенденция к увеличению количества осадков, за исключением осеннего сезона, когда уменьшение количества атмосферных осадков составило 1,3 мм/10 лет (рисунок 3,8; таблица 3.1). Все полученные сезонные тренды статистически незначимы.

Более детальную информацию о характере изменения режима осадков в Казахстане дает пространственное распределение значений коэффициента линейного тренда для годовых, сезонных и месячных сумм осадков (%/10 лет), рассчитанных за период 1941-2017 гг. и представленных на рисунках 3.9 и 3.10.

По данным отдельных метеостанций наблюдается пятнистость в распределении знака изменения годового и сезонного количества осадков (рисунок 3.9).

Тренды *годового* количества осадков на большей территории Казахстана были, в основном, положительны, но незначимы. Статистически достоверное увеличение осадков прослеживается на некоторых метеостанциях западной, северной, центральной и юго-восточной частей республики (4-10 %/10 лет). На метеостанциях Актогай, Бес-Оба (Карагандинская область), Амангельды (Костанайская область) и Уюк (Жамбылская область) устойчивые отрицательные тенденции составили 8-14 %/10 лет.

Наибольшая статистически значимая скорость увеличения количества *зимних* осадков (8-20 % /10 лет) наблюдается на западе, севере и юго-востоке Казахстана. Наибольший вклад в положительный тренд зимнего сезона для западных и юго-восточных районов внесли январь и февраль, для северных районов — декабрь.

Таблица 3.1 — Характеристики линейного тренда (мм/10 лет, %/10 лет) аномалий сезонных и годовых сумм атмосферных осадков, осредненных по территории Казахстана и его областей за период 1976 - 2017 гг. Аномалии рассчитаны относительно базового периода 1981 - 2010 гг.

	Ед.	Год		Зима		Весна		Лето		Осень	
Регион/область	ИЗМ	*a	**R	a	\mathbb{R}^2	a	\mathbb{R}^2	a	\mathbb{R}^2	a	\mathbb{R}^2
Казахстан	MM	5,9	3	2	4	3,4	6	1,9	1	-1,3 -2,5	2
Казалстан	%	1,4		2,6		4,2		2,3	1		2
Кызылординская	MM	-5,1	2	-1,2	1	-0,8	0	0	0	-3,2	8
Кызылординская	%	-3,2		-1,6		-1,1		0,8	O	-10,5	0
Туркестанская	MM	11,6	3	5,4	3	3,7	1	2,6	2	-0,2	0
Туркестанская	%	2,4		2,3		2,2		6,5	2	0,4	
Жамбылская	MM	1,8	0	2,2	1	-3	2	3,5	2	-0,6	0
жамоылская	%	0,3	U	2,4		-3,7		6,2	2	-1,9	U
Алматинская	MM	11,8	3	5,7	9	2,9	1	2,5	1	1	0
Алматинская	%	2,9		7,2		2,3		2,4	1	1,4	
Восточно-	MM	6	2	1,6	1	2,2	1	4	5	-1,2	0
Казахстанская	%	1,9	2	2,5		2,2		4,7		-1,5	
Павлодарская	MM	6,5	2	0,3	0	4,3	9	3,2	1	-1,1	0
Павлодарская	%	2,1		0,7		7,5		2,6	1	-1,6	U
Северо-	MM	13	6	2,1	2	9,4	22	2,3	0	0	0
Казахстанская	%	3,5	U	3,1		13,2		1,6	<u> </u>	-0,1	U
Акмолинская	MM	10,8	4	4,3	10	2,9	3	5,5	2	-1,8 -2,4	1
Акмолинская	%	3,1		8,4		3,9		4,3			1
Костанайская	MM	4,5	1	-0,1	0	8,2	20	0,7	0	-4,4	7
Костанаиская	%	0,9		-0,4		11,3		0,7	U	-6,6	,
Карагандинская	MM	4,5	2	-0,2	2	1,7	1	6,1	8	-3,3 -7,9	7
	%	0,8		-3,2		1,8		7,7	0		
Актюбинская	MM	2,2	0	0,7	0	7	8	-2,2	1	-3,3	4
	%	0,9		1,2		9,3		-2,5	1	-5,3	
Западно-	MM	-1	0	-2,9	5	6,6	12	-4,6	4	-0,2	0
Казахстанская	% -0,4	U	-4,8	<i>J</i>	10,2	12	-6,5	4	-0,2	U	
Атырауская	MM	7	5	3,6	8	7,4	14	-3,2	2	-0,5	0
	%	3,8		9,0		15,0		-6,7		-1,5	U
Мангистауская	MM	0,8	0	4	12	-3,6	4	1,5	1	-1,1	1
Мангистауская	%	0,3		11,3		-6,9		4,4	1	-3,6	1

^{*} а - коэффициент линейного тренда, %/10лет, мм/10 лет;

Устойчивое уменьшение количества атмосферных осадков отмечено на метеостанциях Западно-Казахстанской, Костанайской, Карагандинской и Восточно-Казахстанской областей (9-25 % /10 лет).

Увеличение количества осадков *весной* прослеживается практически по всей территории республики. Значимые положительные тренды на севере и северо-западе Казахстана составили 9-25 %/10 лет. Наибольший вклад в увеличение количества осадков

^{**} R² – коэффициент детерминации,%

^{***}жирным шрифтом выделены статистически достоверные тенденции

весеннего периода внес март, когда значимые положительные тенденции наблюдались на большей части территории республики (рисунок 3.10).

Летом уменьшение влаги наблюдается в западной части территории Казахстана (0,3-20 % /10 лет), но тренды в основном незначимы, за исключением метеостанции Урда, где значимое уменьшение количества осадков составило 16 % /10 лет. Июнь и август становятся более засушливыми месяцами этого сезона. Статистически достоверное увеличение атмосферных осадков отмечено на метеостанциях Карагандинской области – Аксу-Аюлы, Жанаарка, Жарык (10-12 % /10 лет) и на станции Баршатас Восточно-Казахстанской области (15 % /10 лет).

Осенний сезон за исследуемый период становится все более засушливым, особенно сентябрь и октябрь (рисунок 3.10). Отрицательные тренды осеннего периода от 2%/10 лет до 39%/10 лет статистически достоверны на метеостанциях Кызылординской, Актюбинской, Костанайской и Карагандинской областей.

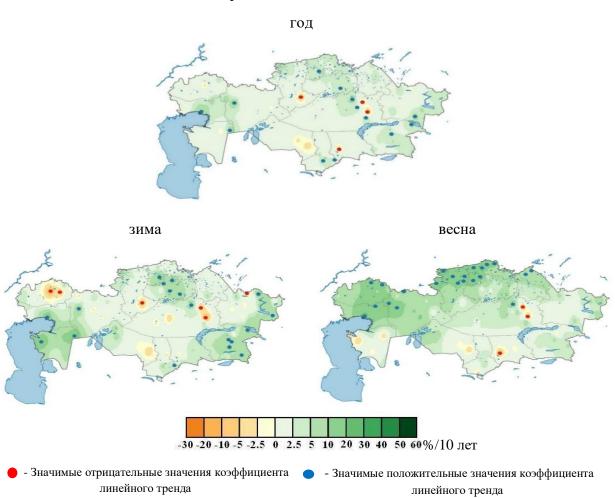


Рисунок 3.9 — Пространственное распределение значений коэффициента линейного тренда годовых и сезонных сумм осадков (%/10 лет), рассчитанных за период 1976 - 2017 гг., $\mathit{Лист 1}$

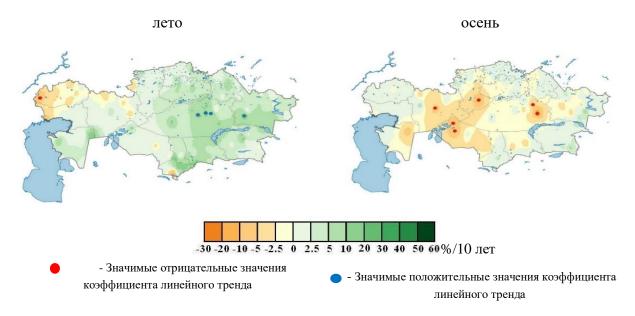


Рисунок 3.9 — Пространственное распределение значений коэффициента линейного тренда годовых и сезонных сумм осадков (%/10 лет), рассчитанных за период 1976 - 2017 гг., *Лист* 2

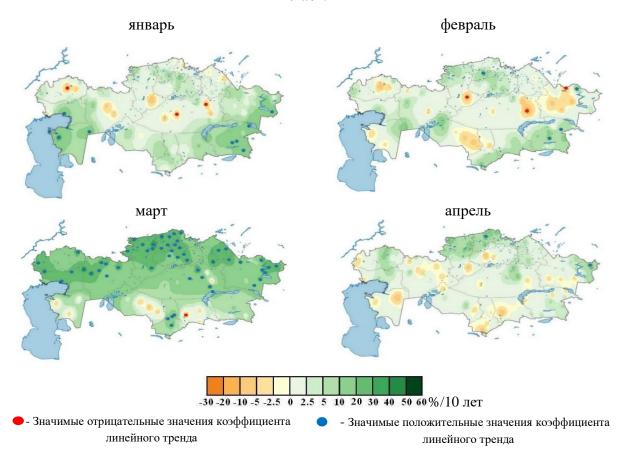


Рисунок 3.10 — Пространственное распределение значений коэффициента линейного тренда месячного количества осадков (%нормы/10 лет), рассчитанного за период 1976 - 2017 гг. *Лист* 1

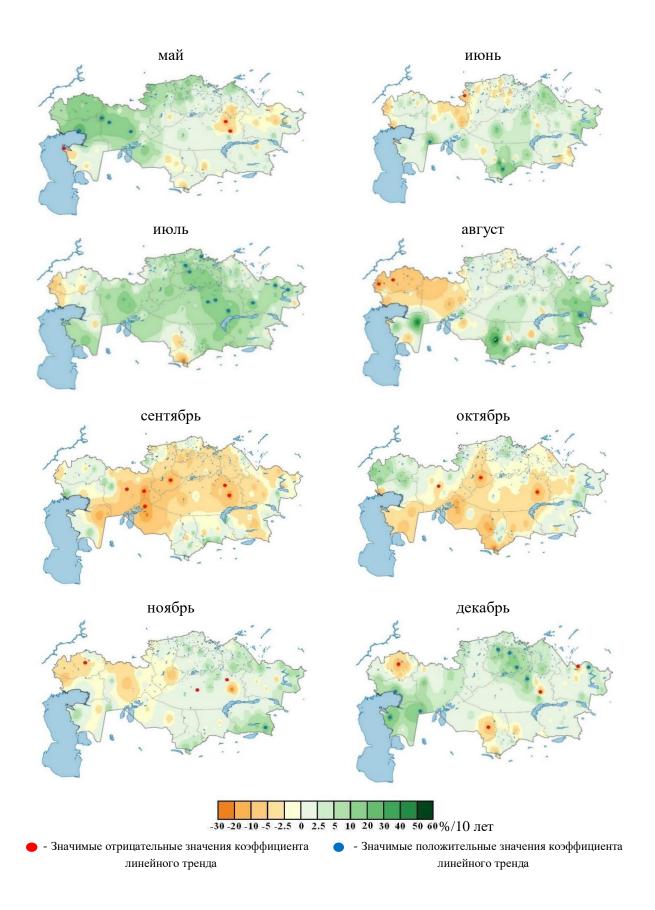


Рисунок 3.10 — Пространственное распределение значений коэффициента линейного тренда месячного количества осадков (%нормы/10 лет), рассчитанного за период 1976 — 2017 гг. $\mathit{Лист}\ 2$

3.3 Тенденции в экстремумах атмосферных осадков

Анализ тенденций в экстремумах атмосферных осадков выполнен за период 1976-2017 гг. на основе наиболее показательных индексов, предложенных ВМО.

Значения максимального суточного количества осадков (индекс Rx1day) на территории Казахстана практически не изменились (рисунок 3.11).На 65 % метеостанций наблюдалось незначительное уменьшение значения максимального суточного количества осадков на 0,01 - 2,0 мм/10 лет. Статистически достоверные положительные изменения от 2до4мм/10 лет были зафиксированы на метеостанциях Аркалык, Аксай, Атырау, Уштобе, Бектауата и Карабалык.

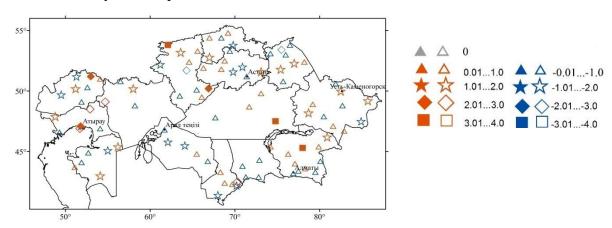


Рисунок 3.11 – Пространственное распределение коэффициента линейного тренда максимальных в году значений суточного количества осадков (мм/10 лет), рассчитанного за период 1976 - 2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда

Анализ тренда в значениях *доли (%/10 лет) экстремального количества осадков в годовой сумме осадков (индекс R95pTOT)* показал, что в целом по Казахстану наблюдались незначительные статистически незначимые тенденции, как ее уменьшения, так и увеличения на 0,01 - 2,0 % 10 лет (рисунок 3.12).

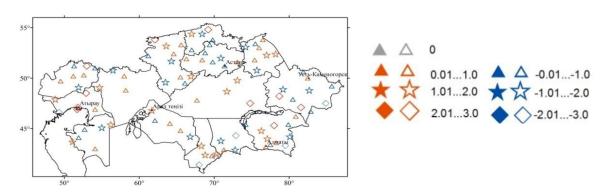
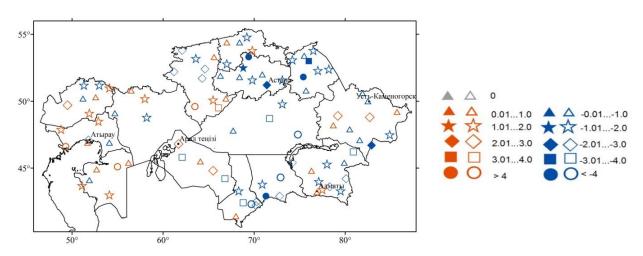
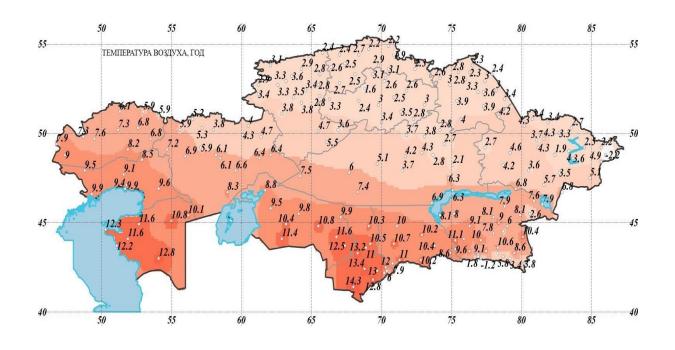
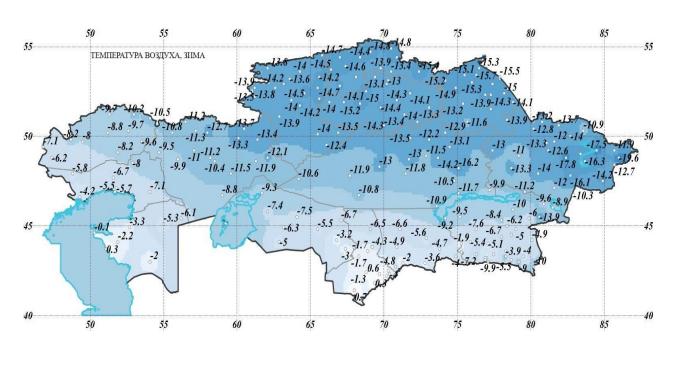


Рисунок 3.12 — Пространственное распределение коэффициента линейного тренда доли (%/10 лет) экстремального количества осадков в годовых суммах осадков, рассчитанного за период 1976 - 2017 гг. Экстремальное количество осадков рассчитано как сумма суточного количества осадков, превышающего 95-й процентиль. Обозначения градаций затушеваны в случаях статистической значимости тренда

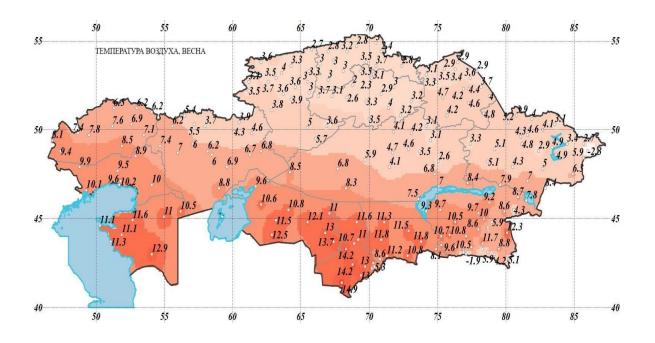
Известно, что увеличение экстремального количества осадков в теплый период приводит к повышению риска возникновения эрозионных процессов, в горных районах - селей дождевого генезиса, а в холодный период - к увеличению опасности лавин.

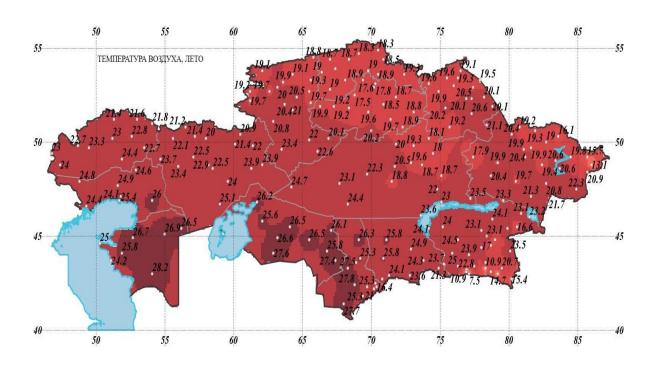
На большей части территории Казахстана наметилась тенденция сокращения максимальной продолжительности периода без осадков (*индекс CDD*, рисунок 3.13). На некоторых станциях Акмолинской, Павлодарской областей, а также метеостанциях юга и юго-востока республики наблюдалось статистически значимое сокращение бездождного периода (от 2 до 6 дней/10 лет).

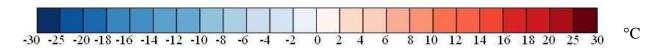



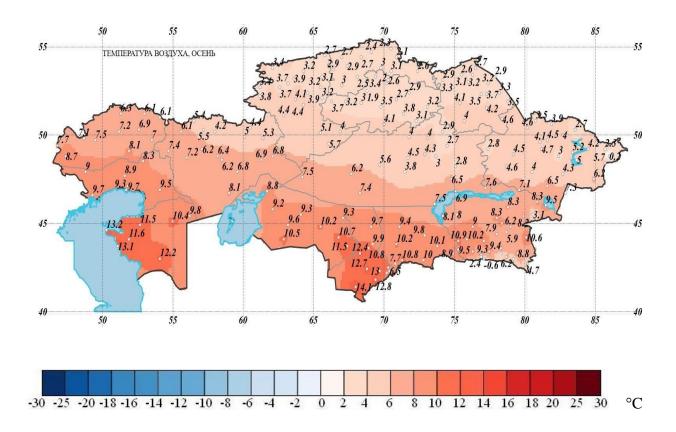

Рисунок 3.13 — Пространственное распределение коэффициента линейного тренда максимальной продолжительности бездождного периода (дни/10 лет), рассчитанного за период 1976 - 2017 гг. Обозначения градаций затушеваны в случаях статистической значимости тренда

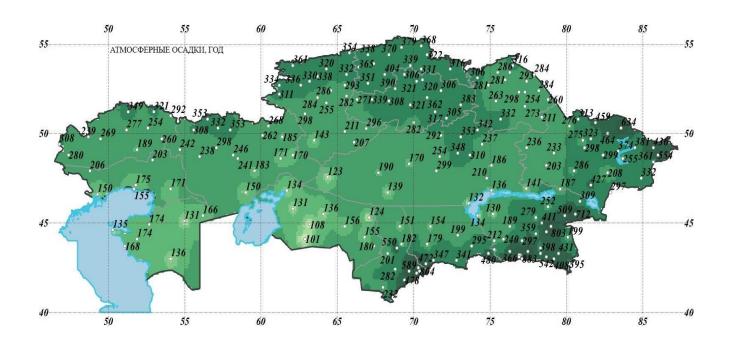
Значения индекса CDD являются важной характеристикой климата, особенно для сельского хозяйства.

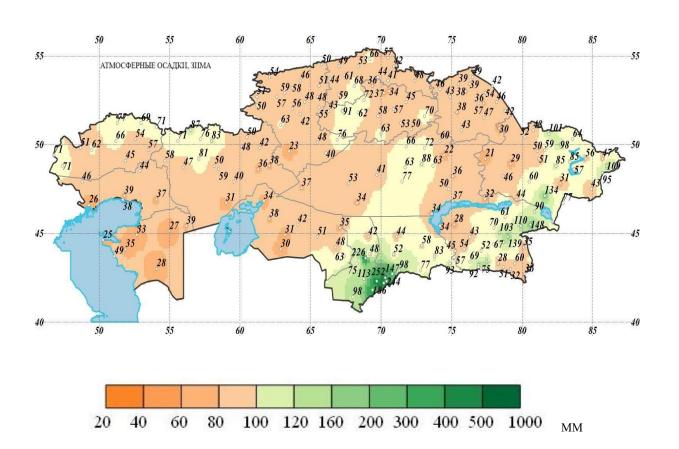

приложение 1

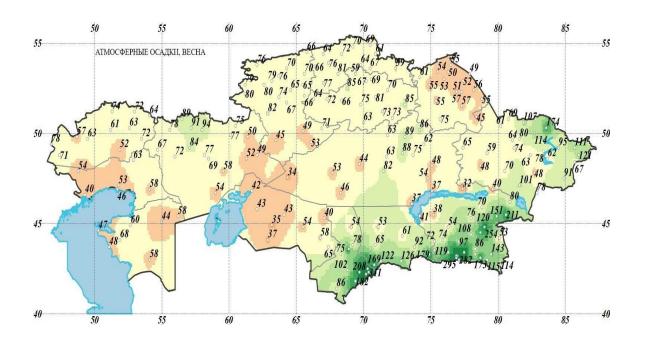

ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ СРЕДНЕГОДОВЫХ И СРЕДНЕСЕЗОННЫХ ТЕМПЕРАТУР ВОЗДУХА ПО ТЕРРИТОРИИ КАЗАХСТАНА, РАССЧИТАННЫХ ЗА ПЕРИОД 1981-2010 гг.

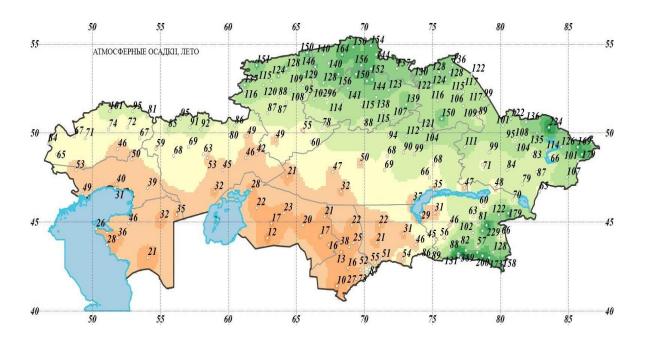


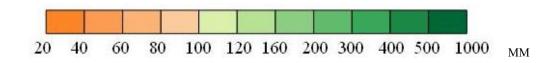









ПРИЛОЖЕНИЕ 2


ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ ГОДОВЫХ И СЕЗОННЫХ СУММ ОСАДКОВ ПО ТЕРРИТОРИИ КАЗАХСТАНА, РАССЧИТАННЫХ ЗА ПЕРИОД 1981-2010 гг.

